Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306175871> ?p ?o ?g. }
- W4306175871 endingPage "108719" @default.
- W4306175871 startingPage "108719" @default.
- W4306175871 abstract "• A new variant of multiobjective teaching-learning-based optimization is proposed. • Good diversity preservation in modified teacher phase via unique search information. • Improved learning efficiency in modified learner phase via two new search operators. • The proposed algorithm can produce Pareto fronts with better quality than its peers. Many real-world engineering problems such as machining processes are multi-objective optimization problems (MOPs) because multiple performance characteristics are considered to satisfy their contradictory goals. An improved multi-objective teaching-learning-based optimization with refined knowledge sharing mechanisms (IMTLBO-RKSM) is proposed to tackle these MOPs effectively. Pareto dominance concept is first incorporated into IMTLBO-RKSM to handle the tradeoffs of multiple contradictory objectives. Appropriate modifications are incorporated into both teacher and learner phases of IMTLBO-RKSM to emulate to emulate the knowledge sharing processes of classroom more accurately, hence achieving better balancing of exploration and exploitation searches. Particularly, both concepts of Euclidean-distance based teacher assignment scheme and social learning are incorporated into the IMTLBO-RKSM’s teacher phase to derive the unique directional information that can provide better guidance for each learner. The learner phase of IMTLBO-RKSM is also modified by designing two new learning mechanisms known as independent learning and adaptive peer learning, aiming to facilitate different preferences of learners in acquiring new knowledge. The performance of IMTLBO-RKSM is evaluated and compared with six multi-objective optimization methods by using five case studies of multi-response machining problems and twelve MOP benchmark functions. Extensive simulation studies show that IMTLBO-RKSM have more competitive performance than other methods by generating Pareto fronts with better quality in terms of accuracy and diversity of solution members for most tested problems." @default.
- W4306175871 created "2022-10-14" @default.
- W4306175871 creator A5009073911 @default.
- W4306175871 creator A5013109227 @default.
- W4306175871 creator A5024833388 @default.
- W4306175871 creator A5037616642 @default.
- W4306175871 creator A5067918786 @default.
- W4306175871 creator A5077364519 @default.
- W4306175871 creator A5078658720 @default.
- W4306175871 creator A5080174718 @default.
- W4306175871 creator A5087776262 @default.
- W4306175871 date "2022-12-01" @default.
- W4306175871 modified "2023-10-11" @default.
- W4306175871 title "Modified teaching-learning-based optimization and applications in multi-response machining processes" @default.
- W4306175871 cites W1075626806 @default.
- W4306175871 cites W1522336061 @default.
- W4306175871 cites W1595159159 @default.
- W4306175871 cites W1659842140 @default.
- W4306175871 cites W1980537810 @default.
- W4306175871 cites W1982928547 @default.
- W4306175871 cites W1987126713 @default.
- W4306175871 cites W1996663207 @default.
- W4306175871 cites W1997632059 @default.
- W4306175871 cites W1999284878 @default.
- W4306175871 cites W2001548773 @default.
- W4306175871 cites W2002078119 @default.
- W4306175871 cites W2002907079 @default.
- W4306175871 cites W2005839045 @default.
- W4306175871 cites W2007047296 @default.
- W4306175871 cites W2022929477 @default.
- W4306175871 cites W2030593776 @default.
- W4306175871 cites W2057332356 @default.
- W4306175871 cites W2062986310 @default.
- W4306175871 cites W2071978936 @default.
- W4306175871 cites W2078563668 @default.
- W4306175871 cites W2082096958 @default.
- W4306175871 cites W2082888448 @default.
- W4306175871 cites W2085360248 @default.
- W4306175871 cites W2086981204 @default.
- W4306175871 cites W2089725409 @default.
- W4306175871 cites W2096166399 @default.
- W4306175871 cites W2110694538 @default.
- W4306175871 cites W2113029148 @default.
- W4306175871 cites W2125899728 @default.
- W4306175871 cites W2126105956 @default.
- W4306175871 cites W2129120446 @default.
- W4306175871 cites W2150046657 @default.
- W4306175871 cites W2165171393 @default.
- W4306175871 cites W2174096823 @default.
- W4306175871 cites W2191445856 @default.
- W4306175871 cites W2232317135 @default.
- W4306175871 cites W2254843561 @default.
- W4306175871 cites W2302855450 @default.
- W4306175871 cites W2471912487 @default.
- W4306175871 cites W2592976053 @default.
- W4306175871 cites W2751383827 @default.
- W4306175871 cites W2753875935 @default.
- W4306175871 cites W2769102407 @default.
- W4306175871 cites W2773918105 @default.
- W4306175871 cites W2785716244 @default.
- W4306175871 cites W2801158513 @default.
- W4306175871 cites W2801670208 @default.
- W4306175871 cites W2889603480 @default.
- W4306175871 cites W2889850369 @default.
- W4306175871 cites W2891329426 @default.
- W4306175871 cites W2900180896 @default.
- W4306175871 cites W2939839947 @default.
- W4306175871 cites W3082889312 @default.
- W4306175871 cites W3119051141 @default.
- W4306175871 cites W3126919906 @default.
- W4306175871 cites W3150951295 @default.
- W4306175871 cites W3208810702 @default.
- W4306175871 cites W3211434935 @default.
- W4306175871 cites W4200143717 @default.
- W4306175871 cites W4206395738 @default.
- W4306175871 cites W4220741619 @default.
- W4306175871 cites W4280636357 @default.
- W4306175871 cites W4281491145 @default.
- W4306175871 cites W4293060865 @default.
- W4306175871 doi "https://doi.org/10.1016/j.cie.2022.108719" @default.
- W4306175871 hasPublicationYear "2022" @default.
- W4306175871 type Work @default.
- W4306175871 citedByCount "3" @default.
- W4306175871 countsByYear W43061758712023 @default.
- W4306175871 crossrefType "journal-article" @default.
- W4306175871 hasAuthorship W4306175871A5009073911 @default.
- W4306175871 hasAuthorship W4306175871A5013109227 @default.
- W4306175871 hasAuthorship W4306175871A5024833388 @default.
- W4306175871 hasAuthorship W4306175871A5037616642 @default.
- W4306175871 hasAuthorship W4306175871A5067918786 @default.
- W4306175871 hasAuthorship W4306175871A5077364519 @default.
- W4306175871 hasAuthorship W4306175871A5078658720 @default.
- W4306175871 hasAuthorship W4306175871A5080174718 @default.
- W4306175871 hasAuthorship W4306175871A5087776262 @default.
- W4306175871 hasConcept C117671659 @default.
- W4306175871 hasConcept C127413603 @default.
- W4306175871 hasConcept C199639397 @default.
- W4306175871 hasConcept C41008148 @default.