Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306176152> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4306176152 abstract "Using a Hilbert space framework inspired by the methods of orthogonal projections and Hodge decompositions, we study a general class of problems (called Z-problems) that arise in effective media theory, especially within the theory of composites, for defining the effective operator. A new and unified approach is developed, based on block operator methods, for obtaining solutions of the Z-problem, formulas for the effective operator in terms of the Schur complement, and associated variational principles (e.g., the Dirichlet and Thomson minimization principles) that lead to upper and lower bounds on the effective operator. In the case of finite-dimensional Hilbert spaces, this allows for a relaxation of the standard hypotheses on positivity and invertibility for the classes of operators usually considered in such problems, by replacing inverses with the Moore-Penrose pseudoinverse. As we develop the theory, we show how it applies to the classical example from the theory of composites on the effective conductivity in the periodic conductivity problem in the continuum (2d and 3d) under the standard hypotheses. After that, we consider the following three important and diverse examples of discrete electrical network problems in which our theory applies under the relaxed hypotheses. First, an operator-theoretic reformulation of the discrete Dirichlet-to-Neumann (DtN) map for an electrical network on a finite linear graph is given and used to relate the DtN map to the effective operator of an associated Z-problem. Second, we show how the classical effective conductivity of an electrical network on a finite linear graph is essentially the effective operator of an associated Z-problem. Finally, we consider electrical networks on periodic linear graphs and develop a discrete analog to classical example of the periodic conductivity equation and effective conductivity in the continuum." @default.
- W4306176152 created "2022-10-14" @default.
- W4306176152 creator A5005787150 @default.
- W4306176152 creator A5059619001 @default.
- W4306176152 creator A5073019460 @default.
- W4306176152 creator A5074726262 @default.
- W4306176152 date "2022-10-11" @default.
- W4306176152 modified "2023-09-27" @default.
- W4306176152 title "Effective operators and their variational principles for discrete electrical network problems" @default.
- W4306176152 doi "https://doi.org/10.48550/arxiv.2210.05761" @default.
- W4306176152 hasPublicationYear "2022" @default.
- W4306176152 type Work @default.
- W4306176152 citedByCount "0" @default.
- W4306176152 crossrefType "posted-content" @default.
- W4306176152 hasAuthorship W4306176152A5005787150 @default.
- W4306176152 hasAuthorship W4306176152A5059619001 @default.
- W4306176152 hasAuthorship W4306176152A5073019460 @default.
- W4306176152 hasAuthorship W4306176152A5074726262 @default.
- W4306176152 hasBestOaLocation W43061761521 @default.
- W4306176152 hasConcept C104317684 @default.
- W4306176152 hasConcept C134306372 @default.
- W4306176152 hasConcept C158448853 @default.
- W4306176152 hasConcept C17020691 @default.
- W4306176152 hasConcept C185592680 @default.
- W4306176152 hasConcept C207467116 @default.
- W4306176152 hasConcept C21556879 @default.
- W4306176152 hasConcept C2524010 @default.
- W4306176152 hasConcept C28826006 @default.
- W4306176152 hasConcept C33923547 @default.
- W4306176152 hasConcept C55493867 @default.
- W4306176152 hasConcept C62799726 @default.
- W4306176152 hasConcept C86339819 @default.
- W4306176152 hasConceptScore W4306176152C104317684 @default.
- W4306176152 hasConceptScore W4306176152C134306372 @default.
- W4306176152 hasConceptScore W4306176152C158448853 @default.
- W4306176152 hasConceptScore W4306176152C17020691 @default.
- W4306176152 hasConceptScore W4306176152C185592680 @default.
- W4306176152 hasConceptScore W4306176152C207467116 @default.
- W4306176152 hasConceptScore W4306176152C21556879 @default.
- W4306176152 hasConceptScore W4306176152C2524010 @default.
- W4306176152 hasConceptScore W4306176152C28826006 @default.
- W4306176152 hasConceptScore W4306176152C33923547 @default.
- W4306176152 hasConceptScore W4306176152C55493867 @default.
- W4306176152 hasConceptScore W4306176152C62799726 @default.
- W4306176152 hasConceptScore W4306176152C86339819 @default.
- W4306176152 hasLocation W43061761521 @default.
- W4306176152 hasOpenAccess W4306176152 @default.
- W4306176152 hasPrimaryLocation W43061761521 @default.
- W4306176152 hasRelatedWork W1482827353 @default.
- W4306176152 hasRelatedWork W1606423697 @default.
- W4306176152 hasRelatedWork W2021660296 @default.
- W4306176152 hasRelatedWork W2050338537 @default.
- W4306176152 hasRelatedWork W2088892953 @default.
- W4306176152 hasRelatedWork W2137171564 @default.
- W4306176152 hasRelatedWork W2154005220 @default.
- W4306176152 hasRelatedWork W2946733187 @default.
- W4306176152 hasRelatedWork W3096340483 @default.
- W4306176152 hasRelatedWork W3116894630 @default.
- W4306176152 isParatext "false" @default.
- W4306176152 isRetracted "false" @default.
- W4306176152 workType "article" @default.