Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306178462> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4306178462 endingPage "373" @default.
- W4306178462 startingPage "345" @default.
- W4306178462 abstract "In this article we characterize the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper L Superscript normal infinity> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>L</mml:mi> </mml:mrow> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathrm {L}^infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> eigenvalue problem associated to the Rayleigh quotient <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-vertical-bar nabla u double-vertical-bar Subscript normal upper L Sub Superscript normal infinity Baseline slash double-vertical-bar u double-vertical-bar Subscript normal infinity> <mml:semantics> <mml:mrow> <mml:mo fence=true stretchy=true symmetric=true /> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>L</mml:mi> </mml:mrow> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow class=MJX-TeXAtom-CLOSE> </mml:mrow> <mml:mo stretchy=true>/</mml:mo> <mml:mrow class=MJX-TeXAtom-OPEN> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msub> </mml:mrow> <mml:mo fence=true stretchy=true symmetric=true /> </mml:mrow> <mml:annotation encoding=application/x-tex>left .{|nabla u|_{mathrm {L}^infty }}middle /{|u|_infty }right .</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and relate it to a divergence-form PDE, similarly to what is known for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper L Superscript p> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>L</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathrm {L}^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> eigenvalue problems and the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Laplacian for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than normal infinity> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>p>infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Contrary to existing methods, which study <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper L Superscript normal infinity> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>L</mml:mi> </mml:mrow> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathrm {L}^infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-problems as limits of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper L Superscript p> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>L</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathrm {L}^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-problems for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p right-arrow normal infinity> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>pto infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we develop a novel framework for analyzing the limiting problem directly using convex analysis and geometric measure theory. For this, we derive a novel fine characterization of the subdifferential of the Lipschitz-constant-functional <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=u right-arrow from bar double-vertical-bar nabla u double-vertical-bar Subscript normal upper L Sub Superscript normal infinity> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy=false>↦<!-- ↦ --></mml:mo> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>L</mml:mi> </mml:mrow> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>umapsto |nabla u|_{mathrm {L}^infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that the eigenvalue problem takes the form <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=lamda nu u equals minus d i v left-parenthesis tau nabla Subscript tau Baseline u right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:msub> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:mi>τ<!-- τ --></mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>lambda nu u =-operatorname {div}(tau nabla _tau u)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=nu> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding=application/x-tex>nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=tau> <mml:semantics> <mml:mi>τ<!-- τ --></mml:mi> <mml:annotation encoding=application/x-tex>tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are non-negative measures concentrated where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartAbsoluteValue u EndAbsoluteValue> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>|u|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> respectively <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartAbsoluteValue nabla u EndAbsoluteValue> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>|nabla u|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are maximal, and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=nabla Subscript tau Baseline u> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:mi>τ<!-- τ --></mml:mi> </mml:msub> <mml:mi>u</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>nabla _tau u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the tangential gradient of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=u> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding=application/x-tex>u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=tau> <mml:semantics> <mml:mi>τ<!-- τ --></mml:mi> <mml:annotation encoding=application/x-tex>tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Lastly, we investigate a dual Rayleigh quotient whose minimizers solve an optimal transport problem associated to a generalized Kantorovich–Rubinstein norm. Our results apply to all stationary points of the Rayleigh quotient, including infinity ground states, infinity harmonic potentials, distance functions, etc., and generalize known results in the literature." @default.
- W4306178462 created "2022-10-14" @default.
- W4306178462 creator A5035045595 @default.
- W4306178462 creator A5051137104 @default.
- W4306178462 date "2022-10-14" @default.
- W4306178462 modified "2023-09-30" @default.
- W4306178462 title "Eigenvalue problems in 𝐿^{∞}: optimality conditions, duality, and relations with optimal transport" @default.
- W4306178462 cites W1979463344 @default.
- W4306178462 cites W1981263972 @default.
- W4306178462 cites W1991234149 @default.
- W4306178462 cites W1995499542 @default.
- W4306178462 cites W1999112138 @default.
- W4306178462 cites W2013662779 @default.
- W4306178462 cites W2030210229 @default.
- W4306178462 cites W2041930077 @default.
- W4306178462 cites W2072096951 @default.
- W4306178462 cites W2079213187 @default.
- W4306178462 cites W2083071282 @default.
- W4306178462 cites W2085524377 @default.
- W4306178462 cites W2108603931 @default.
- W4306178462 cites W2125883113 @default.
- W4306178462 cites W2131133706 @default.
- W4306178462 cites W2136935487 @default.
- W4306178462 cites W2150700223 @default.
- W4306178462 cites W2170610026 @default.
- W4306178462 cites W2172961954 @default.
- W4306178462 cites W2330589517 @default.
- W4306178462 cites W2466473627 @default.
- W4306178462 cites W2962772677 @default.
- W4306178462 cites W2963437084 @default.
- W4306178462 cites W2963684714 @default.
- W4306178462 cites W2964096395 @default.
- W4306178462 cites W3001332551 @default.
- W4306178462 cites W3103058618 @default.
- W4306178462 cites W3110838577 @default.
- W4306178462 cites W3134515041 @default.
- W4306178462 cites W3161271489 @default.
- W4306178462 cites W3206529445 @default.
- W4306178462 cites W4210934461 @default.
- W4306178462 cites W4235916682 @default.
- W4306178462 doi "https://doi.org/10.1090/cams/11" @default.
- W4306178462 hasPublicationYear "2022" @default.
- W4306178462 type Work @default.
- W4306178462 citedByCount "2" @default.
- W4306178462 countsByYear W43061784622023 @default.
- W4306178462 crossrefType "journal-article" @default.
- W4306178462 hasAuthorship W4306178462A5035045595 @default.
- W4306178462 hasAuthorship W4306178462A5051137104 @default.
- W4306178462 hasBestOaLocation W43061784621 @default.
- W4306178462 hasConcept C11413529 @default.
- W4306178462 hasConcept C154945302 @default.
- W4306178462 hasConcept C41008148 @default.
- W4306178462 hasConceptScore W4306178462C11413529 @default.
- W4306178462 hasConceptScore W4306178462C154945302 @default.
- W4306178462 hasConceptScore W4306178462C41008148 @default.
- W4306178462 hasIssue "8" @default.
- W4306178462 hasLocation W43061784621 @default.
- W4306178462 hasLocation W43061784622 @default.
- W4306178462 hasLocation W43061784623 @default.
- W4306178462 hasLocation W43061784624 @default.
- W4306178462 hasLocation W43061784625 @default.
- W4306178462 hasOpenAccess W4306178462 @default.
- W4306178462 hasPrimaryLocation W43061784621 @default.
- W4306178462 hasRelatedWork W2051487156 @default.
- W4306178462 hasRelatedWork W2073681303 @default.
- W4306178462 hasRelatedWork W2317200988 @default.
- W4306178462 hasRelatedWork W2358668433 @default.
- W4306178462 hasRelatedWork W2376932109 @default.
- W4306178462 hasRelatedWork W2382290278 @default.
- W4306178462 hasRelatedWork W2386767533 @default.
- W4306178462 hasRelatedWork W2390279801 @default.
- W4306178462 hasRelatedWork W2748952813 @default.
- W4306178462 hasRelatedWork W2899084033 @default.
- W4306178462 hasVolume "2" @default.
- W4306178462 isParatext "false" @default.
- W4306178462 isRetracted "false" @default.
- W4306178462 workType "article" @default.