Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306180601> ?p ?o ?g. }
- W4306180601 endingPage "e0275747" @default.
- W4306180601 startingPage "e0275747" @default.
- W4306180601 abstract "Background Active ageing is described as the process of optimizing health, empowerment, and security to enhance the quality of life in the rapidly growing population of older adults. Meanwhile, multimorbidity and neurological disorders, such as Parkinson’s disease (PD), lead to global public health and resource limitations. We introduce a novel user-centered paradigm of ageing based on wearable-driven artificial intelligence (AI) that may harness the autonomy and independence that accompany functional limitation or disability, and possibly elevate life expectancy in older adults and people with PD. Methods ActiveAgeing is a 4-year, multicentre, mixed method, cyclic study that combines digital phenotyping via commercial devices (Empatica E4, Fitbit Sense, and Oura Ring) with traditional evaluation (clinical assessment scales, in-depth interviews, and clinical consultations) and includes four types of participants: (1) people with PD and (2) their informal caregiver; (3) healthy older adults from the Helgetun living environment in Norway, and (4) people on the Helgetun waiting list. For the first study, each group will be represented by N = 15 participants to test the data acquisition and to determine the sample size for the second study. To suggest lifestyle changes, modules for human expert-based advice, machine-generated advice, and self-generated advice from accessible data visualization will be designed. Quantitative analysis of physiological data will rely on digital signal processing (DSP) and AI techniques. The clinical assessment scales are the Unified Parkinson’s Disease Rating Scale (UPDRS), Montreal Cognitive Assessment (MoCA), Geriatric Depression Scale (GDS), Geriatric Anxiety Inventory (GAI), Apathy Evaluation Scale (AES), and the REM Sleep Behaviour Disorder Screening Questionnaire (RBDSQ). A qualitative inquiry will be carried out with individual and focus group interviews and analysed using a hermeneutic approach including narrative and thematic analysis techniques. Discussion We hypothesise that digital phenotyping is feasible to explore the ageing process from clinical and lifestyle perspectives including older adults and people with PD. Data is used for clinical decision-making by symptom tracking, predicting symptom evolution, and discovering new outcome measures for clinical trials." @default.
- W4306180601 created "2022-10-14" @default.
- W4306180601 creator A5009303573 @default.
- W4306180601 creator A5018696038 @default.
- W4306180601 creator A5020687980 @default.
- W4306180601 creator A5027277786 @default.
- W4306180601 creator A5034459401 @default.
- W4306180601 creator A5039177298 @default.
- W4306180601 creator A5039904067 @default.
- W4306180601 creator A5057560934 @default.
- W4306180601 creator A5084284576 @default.
- W4306180601 date "2022-10-14" @default.
- W4306180601 modified "2023-10-15" @default.
- W4306180601 title "Digital phenotyping by wearable-driven artificial intelligence in older adults and people with Parkinson’s disease: Protocol of the mixed method, cyclic ActiveAgeing study" @default.
- W4306180601 cites W1537430301 @default.
- W4306180601 cites W1553437616 @default.
- W4306180601 cites W1561072761 @default.
- W4306180601 cites W1833922410 @default.
- W4306180601 cites W1852728451 @default.
- W4306180601 cites W1909058433 @default.
- W4306180601 cites W1953921871 @default.
- W4306180601 cites W1963481649 @default.
- W4306180601 cites W1973679736 @default.
- W4306180601 cites W1974671024 @default.
- W4306180601 cites W1977631358 @default.
- W4306180601 cites W1985610876 @default.
- W4306180601 cites W2002823969 @default.
- W4306180601 cites W2036964455 @default.
- W4306180601 cites W2037041575 @default.
- W4306180601 cites W2041547232 @default.
- W4306180601 cites W2054780155 @default.
- W4306180601 cites W2084393171 @default.
- W4306180601 cites W2102481266 @default.
- W4306180601 cites W2131474077 @default.
- W4306180601 cites W2134034633 @default.
- W4306180601 cites W2143379389 @default.
- W4306180601 cites W2145850223 @default.
- W4306180601 cites W2155186698 @default.
- W4306180601 cites W2165758561 @default.
- W4306180601 cites W2343290709 @default.
- W4306180601 cites W2588993240 @default.
- W4306180601 cites W2592913785 @default.
- W4306180601 cites W2763160983 @default.
- W4306180601 cites W2779593300 @default.
- W4306180601 cites W2791856894 @default.
- W4306180601 cites W2900586747 @default.
- W4306180601 cites W2904404980 @default.
- W4306180601 cites W2945303479 @default.
- W4306180601 cites W2979392173 @default.
- W4306180601 cites W2991851654 @default.
- W4306180601 cites W2995523160 @default.
- W4306180601 cites W2996636445 @default.
- W4306180601 cites W2999310244 @default.
- W4306180601 cites W3005494663 @default.
- W4306180601 cites W3044978152 @default.
- W4306180601 cites W3049637521 @default.
- W4306180601 cites W3128478923 @default.
- W4306180601 cites W3135207484 @default.
- W4306180601 cites W3160285689 @default.
- W4306180601 cites W3173620621 @default.
- W4306180601 cites W4206481149 @default.
- W4306180601 cites W4211123396 @default.
- W4306180601 cites W4230846333 @default.
- W4306180601 cites W4255353872 @default.
- W4306180601 cites W3045797912 @default.
- W4306180601 doi "https://doi.org/10.1371/journal.pone.0275747" @default.
- W4306180601 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36240173" @default.
- W4306180601 hasPublicationYear "2022" @default.
- W4306180601 type Work @default.
- W4306180601 citedByCount "5" @default.
- W4306180601 countsByYear W43061806012022 @default.
- W4306180601 countsByYear W43061806012023 @default.
- W4306180601 crossrefType "journal-article" @default.
- W4306180601 hasAuthorship W4306180601A5009303573 @default.
- W4306180601 hasAuthorship W4306180601A5018696038 @default.
- W4306180601 hasAuthorship W4306180601A5020687980 @default.
- W4306180601 hasAuthorship W4306180601A5027277786 @default.
- W4306180601 hasAuthorship W4306180601A5034459401 @default.
- W4306180601 hasAuthorship W4306180601A5039177298 @default.
- W4306180601 hasAuthorship W4306180601A5039904067 @default.
- W4306180601 hasAuthorship W4306180601A5057560934 @default.
- W4306180601 hasAuthorship W4306180601A5084284576 @default.
- W4306180601 hasBestOaLocation W43061806011 @default.
- W4306180601 hasConcept C118552586 @default.
- W4306180601 hasConcept C142724271 @default.
- W4306180601 hasConcept C15744967 @default.
- W4306180601 hasConcept C159110408 @default.
- W4306180601 hasConcept C169900460 @default.
- W4306180601 hasConcept C2776509080 @default.
- W4306180601 hasConcept C2776632958 @default.
- W4306180601 hasConcept C2779134260 @default.
- W4306180601 hasConcept C2779483572 @default.
- W4306180601 hasConcept C2779951463 @default.
- W4306180601 hasConcept C2908647359 @default.
- W4306180601 hasConcept C71924100 @default.
- W4306180601 hasConcept C74909509 @default.
- W4306180601 hasConcept C99454951 @default.
- W4306180601 hasConceptScore W4306180601C118552586 @default.