Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306194645> ?p ?o ?g. }
- W4306194645 abstract "Most patients with cancer are refractory to immune checkpoint blockade (ICB) therapy, and proper patient stratification remains an open question. Primary patient data suffer from high heterogeneity, low accessibility, and lack of proper controls. In contrast, syngeneic mouse tumor models enable controlled experiments with ICB treatments. Using transcriptomic and experimental variables from >700 ICB-treated/control syngeneic mouse tumors, we developed a machine learning framework to model tumor immunity and identify factors influencing ICB response. Projected on human immunotherapy trial data, we found that the model can predict clinical ICB response. We further applied the model to predicting ICB-responsive/resistant cancer types in The Cancer Genome Atlas, which agreed well with existing clinical reports. Last, feature analysis implicated factors associated with ICB response. In summary, our computational framework based on mouse tumor data reliably stratified patients regarding ICB response, informed resistance mechanisms, and has the potential for wide applications in disease treatment studies." @default.
- W4306194645 created "2022-10-14" @default.
- W4306194645 creator A5020819698 @default.
- W4306194645 creator A5022553634 @default.
- W4306194645 creator A5025044025 @default.
- W4306194645 creator A5028189655 @default.
- W4306194645 creator A5034772411 @default.
- W4306194645 creator A5042723558 @default.
- W4306194645 creator A5072983273 @default.
- W4306194645 creator A5079301959 @default.
- W4306194645 creator A5081967923 @default.
- W4306194645 date "2022-10-14" @default.
- W4306194645 modified "2023-10-14" @default.
- W4306194645 title "Machine learning on syngeneic mouse tumor profiles to model clinical immunotherapy response" @default.
- W4306194645 cites W1902027874 @default.
- W4306194645 cites W1963998366 @default.
- W4306194645 cites W1968970305 @default.
- W4306194645 cites W1969019747 @default.
- W4306194645 cites W2028433016 @default.
- W4306194645 cites W2031696998 @default.
- W4306194645 cites W2039123767 @default.
- W4306194645 cites W2107429737 @default.
- W4306194645 cites W2107665951 @default.
- W4306194645 cites W2118258530 @default.
- W4306194645 cites W2119571791 @default.
- W4306194645 cites W2136127419 @default.
- W4306194645 cites W2136787567 @default.
- W4306194645 cites W2137586531 @default.
- W4306194645 cites W2152061559 @default.
- W4306194645 cites W2160485598 @default.
- W4306194645 cites W2162755712 @default.
- W4306194645 cites W2168621651 @default.
- W4306194645 cites W2169456326 @default.
- W4306194645 cites W2299181842 @default.
- W4306194645 cites W2405459681 @default.
- W4306194645 cites W2412250098 @default.
- W4306194645 cites W2419478310 @default.
- W4306194645 cites W2435243879 @default.
- W4306194645 cites W2478747635 @default.
- W4306194645 cites W2587048937 @default.
- W4306194645 cites W2592811885 @default.
- W4306194645 cites W2604580699 @default.
- W4306194645 cites W2605630275 @default.
- W4306194645 cites W2611654275 @default.
- W4306194645 cites W2613155082 @default.
- W4306194645 cites W2725398806 @default.
- W4306194645 cites W2761575992 @default.
- W4306194645 cites W2764040657 @default.
- W4306194645 cites W2782183686 @default.
- W4306194645 cites W2786027394 @default.
- W4306194645 cites W2805302875 @default.
- W4306194645 cites W2884397450 @default.
- W4306194645 cites W2886498337 @default.
- W4306194645 cites W2887577080 @default.
- W4306194645 cites W2889118778 @default.
- W4306194645 cites W2897100571 @default.
- W4306194645 cites W2898701288 @default.
- W4306194645 cites W2900245702 @default.
- W4306194645 cites W2900410545 @default.
- W4306194645 cites W2904444972 @default.
- W4306194645 cites W2911871569 @default.
- W4306194645 cites W2911986456 @default.
- W4306194645 cites W2912137016 @default.
- W4306194645 cites W2925340929 @default.
- W4306194645 cites W2960703385 @default.
- W4306194645 cites W2968872417 @default.
- W4306194645 cites W2970503027 @default.
- W4306194645 cites W2990215545 @default.
- W4306194645 cites W2991341799 @default.
- W4306194645 cites W2999372945 @default.
- W4306194645 cites W3020766569 @default.
- W4306194645 cites W3028523516 @default.
- W4306194645 cites W3035471293 @default.
- W4306194645 cites W3042708039 @default.
- W4306194645 cites W3083986479 @default.
- W4306194645 cites W3110528877 @default.
- W4306194645 cites W3111243436 @default.
- W4306194645 cites W3120515035 @default.
- W4306194645 cites W3127422037 @default.
- W4306194645 cites W3130791700 @default.
- W4306194645 cites W3199581421 @default.
- W4306194645 cites W4206642776 @default.
- W4306194645 doi "https://doi.org/10.1126/sciadv.abm8564" @default.
- W4306194645 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36240281" @default.
- W4306194645 hasPublicationYear "2022" @default.
- W4306194645 type Work @default.
- W4306194645 citedByCount "2" @default.
- W4306194645 countsByYear W43061946452023 @default.
- W4306194645 crossrefType "journal-article" @default.
- W4306194645 hasAuthorship W4306194645A5020819698 @default.
- W4306194645 hasAuthorship W4306194645A5022553634 @default.
- W4306194645 hasAuthorship W4306194645A5025044025 @default.
- W4306194645 hasAuthorship W4306194645A5028189655 @default.
- W4306194645 hasAuthorship W4306194645A5034772411 @default.
- W4306194645 hasAuthorship W4306194645A5042723558 @default.
- W4306194645 hasAuthorship W4306194645A5072983273 @default.
- W4306194645 hasAuthorship W4306194645A5079301959 @default.
- W4306194645 hasAuthorship W4306194645A5081967923 @default.
- W4306194645 hasBestOaLocation W43061946451 @default.
- W4306194645 hasConcept C121608353 @default.