Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306247941> ?p ?o ?g. }
- W4306247941 endingPage "5335" @default.
- W4306247941 startingPage "5323" @default.
- W4306247941 abstract "Deep neural network has shown a powerful performance in the medical image analysis of a variety of diseases. However, a number of studies over the past few years have demonstrated that these deep learning systems can be vulnerable to well-designed adversarial attacks, with minor disruptions added to the input. Since both the public and academia have focused on deep learning in the health information economy, these adversarial attacks would prove more important and raise security concerns. In this article, adversarial attacks on deep learning systems in medicine are analyzed from two different points of view: 1) white box and 2) black box. A fast adversarial sample generation method, Feature Space-Restricted Attention Attack is proposed to explore more confusing adversarial samples. It is based on a generative adversarial network with bound classification space to generate perturbations to achieve attacks. Meanwhile, it can employ an attention mechanism to focus this perturbation on the lesion region. This enables the perturbation closely associated with the classification information making the attack more efficient and invisible. The performance and specificity of the proposed attack method are demonstrated by conducting extensive experiments on three different types of medical images. Finally, it is expected that this work can assist practitioners become being of current weaknesses in the deployment of deep learning systems in clinical settings. And, it further investigates domain-specific features of medical deep learning systems to enhance model generalization and resistance to attacks." @default.
- W4306247941 created "2022-10-15" @default.
- W4306247941 creator A5003642180 @default.
- W4306247941 creator A5017061083 @default.
- W4306247941 creator A5033971937 @default.
- W4306247941 creator A5037608200 @default.
- W4306247941 creator A5063528590 @default.
- W4306247941 creator A5074624300 @default.
- W4306247941 date "2023-08-01" @default.
- W4306247941 modified "2023-10-17" @default.
- W4306247941 title "A Feature Space-Restricted Attention Attack on Medical Deep Learning Systems" @default.
- W4306247941 cites W1968111725 @default.
- W4306247941 cites W2017257315 @default.
- W4306247941 cites W2154651644 @default.
- W4306247941 cites W2180612164 @default.
- W4306247941 cites W2194775991 @default.
- W4306247941 cites W2558050786 @default.
- W4306247941 cites W2790772420 @default.
- W4306247941 cites W2793968687 @default.
- W4306247941 cites W2799209711 @default.
- W4306247941 cites W2890430415 @default.
- W4306247941 cites W2908201961 @default.
- W4306247941 cites W2917610807 @default.
- W4306247941 cites W2924551358 @default.
- W4306247941 cites W2963446712 @default.
- W4306247941 cites W2963448658 @default.
- W4306247941 cites W2963857521 @default.
- W4306247941 cites W2971376088 @default.
- W4306247941 cites W2981873476 @default.
- W4306247941 cites W2998279916 @default.
- W4306247941 cites W3021182036 @default.
- W4306247941 cites W3046918297 @default.
- W4306247941 cites W3101156210 @default.
- W4306247941 cites W3102651566 @default.
- W4306247941 cites W3103557498 @default.
- W4306247941 cites W3107235539 @default.
- W4306247941 cites W3135005580 @default.
- W4306247941 cites W4206469693 @default.
- W4306247941 cites W4226269514 @default.
- W4306247941 cites W4247200422 @default.
- W4306247941 doi "https://doi.org/10.1109/tcyb.2022.3209175" @default.
- W4306247941 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36240037" @default.
- W4306247941 hasPublicationYear "2023" @default.
- W4306247941 type Work @default.
- W4306247941 citedByCount "2" @default.
- W4306247941 countsByYear W43062479412022 @default.
- W4306247941 crossrefType "journal-article" @default.
- W4306247941 hasAuthorship W4306247941A5003642180 @default.
- W4306247941 hasAuthorship W4306247941A5017061083 @default.
- W4306247941 hasAuthorship W4306247941A5033971937 @default.
- W4306247941 hasAuthorship W4306247941A5037608200 @default.
- W4306247941 hasAuthorship W4306247941A5063528590 @default.
- W4306247941 hasAuthorship W4306247941A5074624300 @default.
- W4306247941 hasConcept C105339364 @default.
- W4306247941 hasConcept C108583219 @default.
- W4306247941 hasConcept C111919701 @default.
- W4306247941 hasConcept C119857082 @default.
- W4306247941 hasConcept C134306372 @default.
- W4306247941 hasConcept C154945302 @default.
- W4306247941 hasConcept C165696696 @default.
- W4306247941 hasConcept C177148314 @default.
- W4306247941 hasConcept C2522767166 @default.
- W4306247941 hasConcept C2984842247 @default.
- W4306247941 hasConcept C33923547 @default.
- W4306247941 hasConcept C37736160 @default.
- W4306247941 hasConcept C38652104 @default.
- W4306247941 hasConcept C41008148 @default.
- W4306247941 hasConcept C50644808 @default.
- W4306247941 hasConcept C83665646 @default.
- W4306247941 hasConceptScore W4306247941C105339364 @default.
- W4306247941 hasConceptScore W4306247941C108583219 @default.
- W4306247941 hasConceptScore W4306247941C111919701 @default.
- W4306247941 hasConceptScore W4306247941C119857082 @default.
- W4306247941 hasConceptScore W4306247941C134306372 @default.
- W4306247941 hasConceptScore W4306247941C154945302 @default.
- W4306247941 hasConceptScore W4306247941C165696696 @default.
- W4306247941 hasConceptScore W4306247941C177148314 @default.
- W4306247941 hasConceptScore W4306247941C2522767166 @default.
- W4306247941 hasConceptScore W4306247941C2984842247 @default.
- W4306247941 hasConceptScore W4306247941C33923547 @default.
- W4306247941 hasConceptScore W4306247941C37736160 @default.
- W4306247941 hasConceptScore W4306247941C38652104 @default.
- W4306247941 hasConceptScore W4306247941C41008148 @default.
- W4306247941 hasConceptScore W4306247941C50644808 @default.
- W4306247941 hasConceptScore W4306247941C83665646 @default.
- W4306247941 hasFunder F4320321001 @default.
- W4306247941 hasIssue "8" @default.
- W4306247941 hasLocation W43062479411 @default.
- W4306247941 hasLocation W43062479412 @default.
- W4306247941 hasOpenAccess W4306247941 @default.
- W4306247941 hasPrimaryLocation W43062479411 @default.
- W4306247941 hasRelatedWork W4223943233 @default.
- W4306247941 hasRelatedWork W4282024860 @default.
- W4306247941 hasRelatedWork W4293865127 @default.
- W4306247941 hasRelatedWork W4312200629 @default.
- W4306247941 hasRelatedWork W4320076403 @default.
- W4306247941 hasRelatedWork W4360585206 @default.
- W4306247941 hasRelatedWork W4364306694 @default.