Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306248583> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4306248583 endingPage "11" @default.
- W4306248583 startingPage "1" @default.
- W4306248583 abstract "With the flourishing of the open-source software community, the problem of software vulnerabilities is becoming more and more serious. Hence, it is urgent to come up with an effective and efficient code vulnerability detection method. Source code vulnerability detection techniques used in practice today like symbolic execution and fuzz testing suffer from high false positives and low code coverage, respectively. Traditional machine-learning-based solutions fail to cope with the diversity of vulnerabilities. To overcome these drawbacks, a large number of deep-learning-based code vulnerability detection works have emerged, aiming at building powerful neural network models to fully learn code semantics and vulnerability patterns. In this survey, we mainly focus on code vulnerability detection approaches based on deep sequence modeling and graph modeling technologies. Our goal is to investigate how these two methods are applied to facilitate code vulnerability detection. We also go over current prevailing datasets that are used to evaluate detection models. At last, we identify the current challenges in this field and share our views on future work." @default.
- W4306248583 created "2022-10-15" @default.
- W4306248583 creator A5061927137 @default.
- W4306248583 creator A5066205926 @default.
- W4306248583 date "2022-10-14" @default.
- W4306248583 modified "2023-10-06" @default.
- W4306248583 title "Code Vulnerability Detection Based on Deep Sequence and Graph Models: A Survey" @default.
- W4306248583 cites W1964731418 @default.
- W4306248583 cites W1992114977 @default.
- W4306248583 cites W2022695357 @default.
- W4306248583 cites W2028820179 @default.
- W4306248583 cites W2043837581 @default.
- W4306248583 cites W2064675550 @default.
- W4306248583 cites W2148357053 @default.
- W4306248583 cites W2166336492 @default.
- W4306248583 cites W2911964244 @default.
- W4306248583 cites W2962960733 @default.
- W4306248583 cites W2976184969 @default.
- W4306248583 cites W2989837574 @default.
- W4306248583 cites W2997128522 @default.
- W4306248583 cites W3004040842 @default.
- W4306248583 cites W3111602563 @default.
- W4306248583 cites W3127736190 @default.
- W4306248583 cites W3161938055 @default.
- W4306248583 cites W3163206498 @default.
- W4306248583 cites W3194346579 @default.
- W4306248583 cites W3198685994 @default.
- W4306248583 cites W4211027502 @default.
- W4306248583 doi "https://doi.org/10.1155/2022/1176898" @default.
- W4306248583 hasPublicationYear "2022" @default.
- W4306248583 type Work @default.
- W4306248583 citedByCount "3" @default.
- W4306248583 countsByYear W43062485832023 @default.
- W4306248583 crossrefType "journal-article" @default.
- W4306248583 hasAuthorship W4306248583A5061927137 @default.
- W4306248583 hasAuthorship W4306248583A5066205926 @default.
- W4306248583 hasBestOaLocation W43062485831 @default.
- W4306248583 hasConcept C108583219 @default.
- W4306248583 hasConcept C119857082 @default.
- W4306248583 hasConcept C154945302 @default.
- W4306248583 hasConcept C177264268 @default.
- W4306248583 hasConcept C199360897 @default.
- W4306248583 hasConcept C202444582 @default.
- W4306248583 hasConcept C22680326 @default.
- W4306248583 hasConcept C2776760102 @default.
- W4306248583 hasConcept C2777904410 @default.
- W4306248583 hasConcept C29983905 @default.
- W4306248583 hasConcept C33923547 @default.
- W4306248583 hasConcept C38652104 @default.
- W4306248583 hasConcept C41008148 @default.
- W4306248583 hasConcept C43126263 @default.
- W4306248583 hasConcept C527648132 @default.
- W4306248583 hasConcept C62913178 @default.
- W4306248583 hasConcept C64869954 @default.
- W4306248583 hasConcept C95713431 @default.
- W4306248583 hasConcept C9652623 @default.
- W4306248583 hasConceptScore W4306248583C108583219 @default.
- W4306248583 hasConceptScore W4306248583C119857082 @default.
- W4306248583 hasConceptScore W4306248583C154945302 @default.
- W4306248583 hasConceptScore W4306248583C177264268 @default.
- W4306248583 hasConceptScore W4306248583C199360897 @default.
- W4306248583 hasConceptScore W4306248583C202444582 @default.
- W4306248583 hasConceptScore W4306248583C22680326 @default.
- W4306248583 hasConceptScore W4306248583C2776760102 @default.
- W4306248583 hasConceptScore W4306248583C2777904410 @default.
- W4306248583 hasConceptScore W4306248583C29983905 @default.
- W4306248583 hasConceptScore W4306248583C33923547 @default.
- W4306248583 hasConceptScore W4306248583C38652104 @default.
- W4306248583 hasConceptScore W4306248583C41008148 @default.
- W4306248583 hasConceptScore W4306248583C43126263 @default.
- W4306248583 hasConceptScore W4306248583C527648132 @default.
- W4306248583 hasConceptScore W4306248583C62913178 @default.
- W4306248583 hasConceptScore W4306248583C64869954 @default.
- W4306248583 hasConceptScore W4306248583C95713431 @default.
- W4306248583 hasConceptScore W4306248583C9652623 @default.
- W4306248583 hasFunder F4320335777 @default.
- W4306248583 hasLocation W43062485831 @default.
- W4306248583 hasOpenAccess W4306248583 @default.
- W4306248583 hasPrimaryLocation W43062485831 @default.
- W4306248583 hasRelatedWork W1569011993 @default.
- W4306248583 hasRelatedWork W2025268205 @default.
- W4306248583 hasRelatedWork W2135328446 @default.
- W4306248583 hasRelatedWork W2484399444 @default.
- W4306248583 hasRelatedWork W2515734597 @default.
- W4306248583 hasRelatedWork W2601710272 @default.
- W4306248583 hasRelatedWork W4223943233 @default.
- W4306248583 hasRelatedWork W4312200629 @default.
- W4306248583 hasRelatedWork W4380075502 @default.
- W4306248583 hasRelatedWork W2753115977 @default.
- W4306248583 hasVolume "2022" @default.
- W4306248583 isParatext "false" @default.
- W4306248583 isRetracted "false" @default.
- W4306248583 workType "article" @default.