Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306249006> ?p ?o ?g. }
- W4306249006 endingPage "16" @default.
- W4306249006 startingPage "1" @default.
- W4306249006 abstract "Melanoma is a dangerous form of skin cancer that results in the demise of patients at the developed stage. Researchers have attempted to develop automated systems for the timely recognition of this deadly disease. However, reliable and precise identification of melanoma moles is a tedious and complex activity as there exist huge differences in the mass, structure, and color of the skin lesions. Additionally, the incidence of noise, blurring, and chrominance changes in the suspected images further enhance the complexity of the detection procedure. In the proposed work, we try to overcome the limitations of the existing work by presenting a deep learning (DL) model. Descriptively, after accomplishing the preprocessing task, we have utilized an object detection approach named CornerNet model to detect melanoma lesions. Then the localized moles are passed as input to the fuzzy K-means (FLM) clustering approach to perform the segmentation task. To assess the segmentation power of the proposed approach, two standard databases named ISIC-2017 and ISIC-2018 are employed. Extensive experimentation has been conducted to demonstrate the robustness of the proposed approach through both numeric and pictorial results. The proposed approach is capable of detecting and segmenting the moles of arbitrary shapes and orientations. Furthermore, the presented work can tackle the presence of noise, blurring, and brightness variations as well. We have attained the segmentation accuracy values of 99.32% and 99.63% over the ISIC-2017 and ISIC-2018 databases correspondingly which clearly depicts the effectiveness of our model for the melanoma mole segmentation." @default.
- W4306249006 created "2022-10-15" @default.
- W4306249006 creator A5000682685 @default.
- W4306249006 creator A5016940622 @default.
- W4306249006 creator A5053995495 @default.
- W4306249006 creator A5054581568 @default.
- W4306249006 creator A5056024500 @default.
- W4306249006 creator A5067940140 @default.
- W4306249006 date "2022-10-14" @default.
- W4306249006 modified "2023-10-01" @default.
- W4306249006 title "MSeg-Net: A Melanoma Mole Segmentation Network Using CornerNet and Fuzzy <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>K</mi> </math>-Means Clustering" @default.
- W4306249006 cites W1480009832 @default.
- W4306249006 cites W1972406788 @default.
- W4306249006 cites W1994830509 @default.
- W4306249006 cites W2007739294 @default.
- W4306249006 cites W2040600853 @default.
- W4306249006 cites W2065427498 @default.
- W4306249006 cites W2075588526 @default.
- W4306249006 cites W2166538457 @default.
- W4306249006 cites W2183182206 @default.
- W4306249006 cites W2594373254 @default.
- W4306249006 cites W2603773317 @default.
- W4306249006 cites W2607363228 @default.
- W4306249006 cites W2607620597 @default.
- W4306249006 cites W2640925094 @default.
- W4306249006 cites W2782684153 @default.
- W4306249006 cites W2885668531 @default.
- W4306249006 cites W2886335102 @default.
- W4306249006 cites W2921583345 @default.
- W4306249006 cites W2937395268 @default.
- W4306249006 cites W2963037989 @default.
- W4306249006 cites W2963059730 @default.
- W4306249006 cites W2963881378 @default.
- W4306249006 cites W2997781171 @default.
- W4306249006 cites W2998401283 @default.
- W4306249006 cites W3012154150 @default.
- W4306249006 cites W3042641913 @default.
- W4306249006 cites W3048174094 @default.
- W4306249006 cites W3084438349 @default.
- W4306249006 cites W3092884672 @default.
- W4306249006 cites W3094329596 @default.
- W4306249006 cites W3097937964 @default.
- W4306249006 cites W3099345398 @default.
- W4306249006 cites W3101344540 @default.
- W4306249006 cites W3102100346 @default.
- W4306249006 cites W3106250896 @default.
- W4306249006 cites W3114688163 @default.
- W4306249006 cites W3118471509 @default.
- W4306249006 cites W3120946080 @default.
- W4306249006 cites W3133356497 @default.
- W4306249006 cites W3144843762 @default.
- W4306249006 cites W3145512623 @default.
- W4306249006 cites W3158436118 @default.
- W4306249006 cites W3159690776 @default.
- W4306249006 cites W3170108663 @default.
- W4306249006 cites W3178621454 @default.
- W4306249006 cites W3186192960 @default.
- W4306249006 cites W3189955102 @default.
- W4306249006 cites W3195127593 @default.
- W4306249006 cites W3195373382 @default.
- W4306249006 cites W3196396697 @default.
- W4306249006 cites W3198906447 @default.
- W4306249006 cites W3200260394 @default.
- W4306249006 cites W3201886299 @default.
- W4306249006 cites W3204669600 @default.
- W4306249006 cites W3208585296 @default.
- W4306249006 cites W3209646389 @default.
- W4306249006 cites W3216760285 @default.
- W4306249006 cites W4200015473 @default.
- W4306249006 cites W4205138613 @default.
- W4306249006 cites W4205324329 @default.
- W4306249006 cites W4205744751 @default.
- W4306249006 cites W4206292903 @default.
- W4306249006 cites W4206302084 @default.
- W4306249006 cites W4210336990 @default.
- W4306249006 cites W4210549461 @default.
- W4306249006 cites W4220840109 @default.
- W4306249006 cites W4220894730 @default.
- W4306249006 cites W4225640122 @default.
- W4306249006 cites W4226300728 @default.
- W4306249006 cites W4286795969 @default.
- W4306249006 cites W4298084439 @default.
- W4306249006 cites W4302028121 @default.
- W4306249006 cites W639708223 @default.
- W4306249006 doi "https://doi.org/10.1155/2022/7502504" @default.
- W4306249006 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36276999" @default.
- W4306249006 hasPublicationYear "2022" @default.
- W4306249006 type Work @default.
- W4306249006 citedByCount "2" @default.
- W4306249006 countsByYear W43062490062023 @default.
- W4306249006 crossrefType "journal-article" @default.
- W4306249006 hasAuthorship W4306249006A5000682685 @default.
- W4306249006 hasAuthorship W4306249006A5016940622 @default.
- W4306249006 hasAuthorship W4306249006A5053995495 @default.
- W4306249006 hasAuthorship W4306249006A5054581568 @default.
- W4306249006 hasAuthorship W4306249006A5056024500 @default.
- W4306249006 hasAuthorship W4306249006A5067940140 @default.
- W4306249006 hasBestOaLocation W43062490061 @default.