Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306249917> ?p ?o ?g. }
- W4306249917 endingPage "195" @default.
- W4306249917 startingPage "179" @default.
- W4306249917 abstract "Forest fires are a very common in India, especially in the hilly regions of the western and northeastern Himalayas, which puts adverse impacts on the environment and society. Himachal Pradesh and Uttarakhand are the states most prone to forest fires; therefore, this research is intended to map forest fire occurrence in both states using geospatial techniques and machine learning algorithms (MLAs). To fulfill this objective, we used the meteorological data such as evapotranspiration, precipitation, temperature and wind speed data regarding aridity, elevation, slope, aspect, curvature and land use/land cover (LULC) data; and three MLAs: support vector machine (SVM), random forest (RF), and logistic regression (LR) along with an ensemble learning model were used for the modeling of susceptibility of forest fires. This produced forest fire susceptible maps that were finally validated using the global fire atlas of the NASA Earth DATA. The result showed that more than 50% of the area of Uttarakhand and Himachal Pradesh states lies under the moderate, high, and very high forest fire susceptible zones. Further, most of the low hilly and foothill regions of both the states lie under the high and very high forest fire susceptible zones. The validation of the models used was completed using the ROC curve, which showed that the area under curve (AUC) of the ROC (experimental and binormal) was highest for ensemble model, i.e. 0.923 and 0.989, respectively followed by SVM (0.89 and 0.97), RF (0.887 and 0.96), and LR (0.85 and 0.92). This indicates that, although all the models produced satisfactory results, the accuracy of the ensemble model was highest. The output of this research can be utilized for the effective mitigation of forest fires, as well as forest management in the region. Further, similar approaches may be used in other parts of the world for forest fire susceptibility mapping using additional parameters." @default.
- W4306249917 created "2022-10-15" @default.
- W4306249917 creator A5019013529 @default.
- W4306249917 creator A5048921865 @default.
- W4306249917 creator A5060374600 @default.
- W4306249917 creator A5064098467 @default.
- W4306249917 creator A5067395358 @default.
- W4306249917 creator A5082249056 @default.
- W4306249917 date "2022-10-14" @default.
- W4306249917 modified "2023-10-05" @default.
- W4306249917 title "Forest Fire Susceptibility Mapping by Integrating Remote Sensing and Machine Learning Algorithms" @default.
- W4306249917 cites W1994214164 @default.
- W4306249917 cites W2000232940 @default.
- W4306249917 cites W2053872478 @default.
- W4306249917 cites W2075157595 @default.
- W4306249917 cites W2481142482 @default.
- W4306249917 cites W2487770199 @default.
- W4306249917 cites W2761085791 @default.
- W4306249917 cites W2769668329 @default.
- W4306249917 cites W2780363565 @default.
- W4306249917 cites W2789262548 @default.
- W4306249917 cites W2790266365 @default.
- W4306249917 cites W2802647603 @default.
- W4306249917 cites W2802953454 @default.
- W4306249917 cites W2805686157 @default.
- W4306249917 cites W2900620142 @default.
- W4306249917 cites W2911964244 @default.
- W4306249917 cites W2921124223 @default.
- W4306249917 cites W2943021196 @default.
- W4306249917 cites W2972972597 @default.
- W4306249917 cites W2994660704 @default.
- W4306249917 cites W3006052487 @default.
- W4306249917 cites W3014372673 @default.
- W4306249917 cites W3023901488 @default.
- W4306249917 cites W3036595569 @default.
- W4306249917 cites W3083424552 @default.
- W4306249917 cites W3108122547 @default.
- W4306249917 cites W3114314572 @default.
- W4306249917 cites W3118731221 @default.
- W4306249917 cites W3122360942 @default.
- W4306249917 cites W3128777423 @default.
- W4306249917 cites W3155498383 @default.
- W4306249917 cites W3166182933 @default.
- W4306249917 cites W3173406979 @default.
- W4306249917 cites W3176462473 @default.
- W4306249917 doi "https://doi.org/10.1002/9781119788157.ch9" @default.
- W4306249917 hasPublicationYear "2022" @default.
- W4306249917 type Work @default.
- W4306249917 citedByCount "2" @default.
- W4306249917 countsByYear W43062499172022 @default.
- W4306249917 countsByYear W43062499172023 @default.
- W4306249917 crossrefType "other" @default.
- W4306249917 hasAuthorship W4306249917A5019013529 @default.
- W4306249917 hasAuthorship W4306249917A5048921865 @default.
- W4306249917 hasAuthorship W4306249917A5060374600 @default.
- W4306249917 hasAuthorship W4306249917A5064098467 @default.
- W4306249917 hasAuthorship W4306249917A5067395358 @default.
- W4306249917 hasAuthorship W4306249917A5082249056 @default.
- W4306249917 hasConcept C100970517 @default.
- W4306249917 hasConcept C11413529 @default.
- W4306249917 hasConcept C119857082 @default.
- W4306249917 hasConcept C12267149 @default.
- W4306249917 hasConcept C127413603 @default.
- W4306249917 hasConcept C147176958 @default.
- W4306249917 hasConcept C153294291 @default.
- W4306249917 hasConcept C161067210 @default.
- W4306249917 hasConcept C169258074 @default.
- W4306249917 hasConcept C176783924 @default.
- W4306249917 hasConcept C18903297 @default.
- W4306249917 hasConcept C205649164 @default.
- W4306249917 hasConcept C2524010 @default.
- W4306249917 hasConcept C2780648208 @default.
- W4306249917 hasConcept C33923547 @default.
- W4306249917 hasConcept C37054046 @default.
- W4306249917 hasConcept C39432304 @default.
- W4306249917 hasConcept C41008148 @default.
- W4306249917 hasConcept C4792198 @default.
- W4306249917 hasConcept C58640448 @default.
- W4306249917 hasConcept C62649853 @default.
- W4306249917 hasConcept C86803240 @default.
- W4306249917 hasConcept C9770341 @default.
- W4306249917 hasConceptScore W4306249917C100970517 @default.
- W4306249917 hasConceptScore W4306249917C11413529 @default.
- W4306249917 hasConceptScore W4306249917C119857082 @default.
- W4306249917 hasConceptScore W4306249917C12267149 @default.
- W4306249917 hasConceptScore W4306249917C127413603 @default.
- W4306249917 hasConceptScore W4306249917C147176958 @default.
- W4306249917 hasConceptScore W4306249917C153294291 @default.
- W4306249917 hasConceptScore W4306249917C161067210 @default.
- W4306249917 hasConceptScore W4306249917C169258074 @default.
- W4306249917 hasConceptScore W4306249917C176783924 @default.
- W4306249917 hasConceptScore W4306249917C18903297 @default.
- W4306249917 hasConceptScore W4306249917C205649164 @default.
- W4306249917 hasConceptScore W4306249917C2524010 @default.
- W4306249917 hasConceptScore W4306249917C2780648208 @default.
- W4306249917 hasConceptScore W4306249917C33923547 @default.
- W4306249917 hasConceptScore W4306249917C37054046 @default.
- W4306249917 hasConceptScore W4306249917C39432304 @default.