Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306252102> ?p ?o ?g. }
- W4306252102 endingPage "103049" @default.
- W4306252102 startingPage "103049" @default.
- W4306252102 abstract "The leaf area index (LAI) is a crucial biophysical variable for remote sensing vegetation studies. LAI estimation through remote sensing data has mostly been investigated using visible and near-infrared (0.4–1.3 μm, VNIR) and Shortwave Infrared (1.4–3 μm, SWIR) data. However, Thermal Infrared (3–14 μm, TIR) data for LAI retrieval has rarely been explored. This study aims to predict LAI by integrating VNIR and TIR data from Unmanned Aerial Systems (UAS) in a mixed temperate forest, the Haagse Bos, Enschede, the Netherlands. The VNIR and TIR images were acquired in September 2020, in conjunction with fieldwork to collect LAI in situ data for 30 plots. TIR images were acquired at two heights (i.e., 85 m and 120 m above ground) to investigate the effect of flight height on the LAI prediction accuracy by means of UAS data. Land Surface Temperature (LST) and Land Surface Emissivity (LSE) were computed and extracted from the collected images. LAI was estimated using seven vegetation indices and Partial Least Squares Regression (PLSR). LAI prediction accuracy using VNIR reflectance spectra was compared to the accuracy achieved by integrating VNIR data with LST or LSE applying vegetation indices as well as PLSR. Among the applied vegetation indices, the Reduced Simple Ratio (RSR) gained the highest prediction accuracy using VNIR data (R2 = 0.5815, RMSE = 0.6972); the prediction accuracy was not improved when LST was integrated with VNIR data but increased when LSE was included (RSR: R2 = 0.7458, RMSE = 0.5081). However, when LST from 85 m altitude and VNIR data was applied as an input using PLSR (R2 = 0.5565, RMSECV = 0.7998), the LAI prediction accuracy was slightly increased compared to when only VNIR data was used (R2 = 0.4452, RMSECV = 0.8668). Integrating VNIR data with LSE significantly improved the LAI retrieval accuracy (R2 = 0.7907, RMSECV = 0.8351). These findings corroborate prior research indicating that combining LSE with VNIR data can increase the prediction accuracy of LAI. However, LST was found to be ineffective for this purpose. The relationship between LAI and LSE should be the subject of more investigation through various approaches to bridge the existing scientific gap." @default.
- W4306252102 created "2022-10-15" @default.
- W4306252102 creator A5008640676 @default.
- W4306252102 creator A5033112909 @default.
- W4306252102 creator A5063580781 @default.
- W4306252102 date "2022-11-01" @default.
- W4306252102 modified "2023-09-26" @default.
- W4306252102 title "Prediction of leaf area index using thermal infrared data acquired by UAS over a mixed temperate forest" @default.
- W4306252102 cites W1036898853 @default.
- W4306252102 cites W1620950925 @default.
- W4306252102 cites W1966547485 @default.
- W4306252102 cites W1967395374 @default.
- W4306252102 cites W1976647229 @default.
- W4306252102 cites W1976712888 @default.
- W4306252102 cites W1990347246 @default.
- W4306252102 cites W1995397999 @default.
- W4306252102 cites W1999091234 @default.
- W4306252102 cites W2001564322 @default.
- W4306252102 cites W2002022751 @default.
- W4306252102 cites W2008467627 @default.
- W4306252102 cites W2011891056 @default.
- W4306252102 cites W2012411921 @default.
- W4306252102 cites W2012686349 @default.
- W4306252102 cites W2018027183 @default.
- W4306252102 cites W2019985735 @default.
- W4306252102 cites W2025089902 @default.
- W4306252102 cites W2025967407 @default.
- W4306252102 cites W2026249611 @default.
- W4306252102 cites W2026337749 @default.
- W4306252102 cites W2028220976 @default.
- W4306252102 cites W2029106460 @default.
- W4306252102 cites W2029733275 @default.
- W4306252102 cites W2032305420 @default.
- W4306252102 cites W2040403200 @default.
- W4306252102 cites W2052700773 @default.
- W4306252102 cites W2057672482 @default.
- W4306252102 cites W2063623478 @default.
- W4306252102 cites W2071454092 @default.
- W4306252102 cites W2078478034 @default.
- W4306252102 cites W2079432674 @default.
- W4306252102 cites W2089441588 @default.
- W4306252102 cites W2094677081 @default.
- W4306252102 cites W2097970470 @default.
- W4306252102 cites W2108038635 @default.
- W4306252102 cites W2113034257 @default.
- W4306252102 cites W2113410727 @default.
- W4306252102 cites W2119532538 @default.
- W4306252102 cites W2126142391 @default.
- W4306252102 cites W2134832022 @default.
- W4306252102 cites W2151647593 @default.
- W4306252102 cites W2156049446 @default.
- W4306252102 cites W2158863190 @default.
- W4306252102 cites W2161241309 @default.
- W4306252102 cites W2166326933 @default.
- W4306252102 cites W2169447826 @default.
- W4306252102 cites W2498515979 @default.
- W4306252102 cites W2603028033 @default.
- W4306252102 cites W2613997801 @default.
- W4306252102 cites W2617056706 @default.
- W4306252102 cites W2624652690 @default.
- W4306252102 cites W2761012186 @default.
- W4306252102 cites W2767279856 @default.
- W4306252102 cites W2791160863 @default.
- W4306252102 cites W2884820639 @default.
- W4306252102 cites W2899597674 @default.
- W4306252102 cites W2904957358 @default.
- W4306252102 cites W2912130932 @default.
- W4306252102 cites W2912203297 @default.
- W4306252102 cites W2917388591 @default.
- W4306252102 cites W2935696263 @default.
- W4306252102 cites W2946644377 @default.
- W4306252102 cites W2964415981 @default.
- W4306252102 cites W2969333957 @default.
- W4306252102 cites W2980733782 @default.
- W4306252102 cites W2981792938 @default.
- W4306252102 cites W2988241847 @default.
- W4306252102 cites W2989660890 @default.
- W4306252102 cites W2996041315 @default.
- W4306252102 cites W3003766753 @default.
- W4306252102 cites W3005863531 @default.
- W4306252102 cites W3011464803 @default.
- W4306252102 cites W3014497710 @default.
- W4306252102 cites W3022843305 @default.
- W4306252102 cites W3037343745 @default.
- W4306252102 cites W3092199742 @default.
- W4306252102 cites W3119484940 @default.
- W4306252102 cites W3139392750 @default.
- W4306252102 cites W4224327007 @default.
- W4306252102 doi "https://doi.org/10.1016/j.jag.2022.103049" @default.
- W4306252102 hasPublicationYear "2022" @default.
- W4306252102 type Work @default.
- W4306252102 citedByCount "0" @default.
- W4306252102 crossrefType "journal-article" @default.
- W4306252102 hasAuthorship W4306252102A5008640676 @default.
- W4306252102 hasAuthorship W4306252102A5033112909 @default.
- W4306252102 hasAuthorship W4306252102A5063580781 @default.
- W4306252102 hasBestOaLocation W43062521021 @default.
- W4306252102 hasConcept C105795698 @default.