Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306253545> ?p ?o ?g. }
- W4306253545 endingPage "589" @default.
- W4306253545 startingPage "575" @default.
- W4306253545 abstract "Environmental contaminants, naturally occurring toxicants, pesticide residues, and food additives are the four chemical-associated categories of six for food safety established by the Food and Drug Administration. The direct food additives, which are intentionally added to food, are the main focus of this case study, and the indirect food additives, such as pesticides, natural toxicants, and environmental residues will also be discussed. This study is attempting to investigate how artificial intelligence tools developed using big data could support the hazard evaluation of food additives. Automated read-across technology, that is, the read-across-based structure activity relationships (RASAR) tool, was utilized to generate predictions, which were compared with traditional animal testing methods to assess utility for providing estimates of chemical toxicity for food-relevant substances. This was conducted using Underwriters Laboratories (UL) Cheminformatics Tool Kit followed by descriptive statistics and performance-based validation with datasets retrieved from sources such as the European Chemicals Agency, the US Environmental Protection Agency, the Occupational Safety and Health Administration, the European Food Safety Authority, and other literature. In our analysis, the main findings indicate that more direct food additives than indirect food additives are in the training data and there were more non-toxicants than toxicants, which was expected for food-related substances. Most results were at “very strong” and “strong” reliability level. For 123 cases, where classifications could be retrieved from other sources for a preliminary validation, 83% of the RASAR results matched with the toxicological assessment results confirming that in silico tools can robustly generate predictions for informing on the potential of food-use chemical toxicity." @default.
- W4306253545 created "2022-10-15" @default.
- W4306253545 creator A5019123020 @default.
- W4306253545 creator A5034172499 @default.
- W4306253545 creator A5057669703 @default.
- W4306253545 creator A5091124551 @default.
- W4306253545 date "2023-01-01" @default.
- W4306253545 modified "2023-09-30" @default.
- W4306253545 title "The use of artificial intelligence and big data for the safety evaluation of US food-relevant chemicals" @default.
- W4306253545 cites W1998497582 @default.
- W4306253545 cites W2007952518 @default.
- W4306253545 cites W2039530899 @default.
- W4306253545 cites W2041275966 @default.
- W4306253545 cites W2069698352 @default.
- W4306253545 cites W2317467438 @default.
- W4306253545 cites W2319741579 @default.
- W4306253545 cites W2339976343 @default.
- W4306253545 cites W2417182988 @default.
- W4306253545 cites W2591902986 @default.
- W4306253545 cites W2598630627 @default.
- W4306253545 cites W2739030731 @default.
- W4306253545 cites W2765459340 @default.
- W4306253545 cites W2766608722 @default.
- W4306253545 cites W2779588417 @default.
- W4306253545 cites W2788762339 @default.
- W4306253545 cites W2800000557 @default.
- W4306253545 cites W2800495173 @default.
- W4306253545 cites W2822962393 @default.
- W4306253545 cites W2883962615 @default.
- W4306253545 cites W2898525745 @default.
- W4306253545 cites W3173735040 @default.
- W4306253545 cites W358304257 @default.
- W4306253545 cites W4231388594 @default.
- W4306253545 doi "https://doi.org/10.1016/b978-0-12-819470-6.00061-5" @default.
- W4306253545 hasPublicationYear "2023" @default.
- W4306253545 type Work @default.
- W4306253545 citedByCount "0" @default.
- W4306253545 crossrefType "book-chapter" @default.
- W4306253545 hasAuthorship W4306253545A5019123020 @default.
- W4306253545 hasAuthorship W4306253545A5034172499 @default.
- W4306253545 hasAuthorship W4306253545A5057669703 @default.
- W4306253545 hasAuthorship W4306253545A5091124551 @default.
- W4306253545 hasConcept C106848363 @default.
- W4306253545 hasConcept C108170787 @default.
- W4306253545 hasConcept C111472728 @default.
- W4306253545 hasConcept C12546600 @default.
- W4306253545 hasConcept C127413603 @default.
- W4306253545 hasConcept C138885662 @default.
- W4306253545 hasConcept C139145706 @default.
- W4306253545 hasConcept C144133560 @default.
- W4306253545 hasConcept C146978453 @default.
- W4306253545 hasConcept C161176658 @default.
- W4306253545 hasConcept C185592680 @default.
- W4306253545 hasConcept C198408306 @default.
- W4306253545 hasConcept C206355099 @default.
- W4306253545 hasConcept C2777762679 @default.
- W4306253545 hasConcept C31903555 @default.
- W4306253545 hasConcept C516717267 @default.
- W4306253545 hasConcept C6557445 @default.
- W4306253545 hasConcept C71924100 @default.
- W4306253545 hasConcept C74139830 @default.
- W4306253545 hasConcept C86803240 @default.
- W4306253545 hasConcept C99454951 @default.
- W4306253545 hasConceptScore W4306253545C106848363 @default.
- W4306253545 hasConceptScore W4306253545C108170787 @default.
- W4306253545 hasConceptScore W4306253545C111472728 @default.
- W4306253545 hasConceptScore W4306253545C12546600 @default.
- W4306253545 hasConceptScore W4306253545C127413603 @default.
- W4306253545 hasConceptScore W4306253545C138885662 @default.
- W4306253545 hasConceptScore W4306253545C139145706 @default.
- W4306253545 hasConceptScore W4306253545C144133560 @default.
- W4306253545 hasConceptScore W4306253545C146978453 @default.
- W4306253545 hasConceptScore W4306253545C161176658 @default.
- W4306253545 hasConceptScore W4306253545C185592680 @default.
- W4306253545 hasConceptScore W4306253545C198408306 @default.
- W4306253545 hasConceptScore W4306253545C206355099 @default.
- W4306253545 hasConceptScore W4306253545C2777762679 @default.
- W4306253545 hasConceptScore W4306253545C31903555 @default.
- W4306253545 hasConceptScore W4306253545C516717267 @default.
- W4306253545 hasConceptScore W4306253545C6557445 @default.
- W4306253545 hasConceptScore W4306253545C71924100 @default.
- W4306253545 hasConceptScore W4306253545C74139830 @default.
- W4306253545 hasConceptScore W4306253545C86803240 @default.
- W4306253545 hasConceptScore W4306253545C99454951 @default.
- W4306253545 hasLocation W43062535451 @default.
- W4306253545 hasOpenAccess W4306253545 @default.
- W4306253545 hasPrimaryLocation W43062535451 @default.
- W4306253545 hasRelatedWork W109090205 @default.
- W4306253545 hasRelatedWork W1425341752 @default.
- W4306253545 hasRelatedWork W1980764357 @default.
- W4306253545 hasRelatedWork W2324343781 @default.
- W4306253545 hasRelatedWork W2373101853 @default.
- W4306253545 hasRelatedWork W2416047312 @default.
- W4306253545 hasRelatedWork W2765448837 @default.
- W4306253545 hasRelatedWork W2912150208 @default.
- W4306253545 hasRelatedWork W2986701948 @default.
- W4306253545 hasRelatedWork W90982559 @default.
- W4306253545 isParatext "false" @default.