Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306254823> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4306254823 abstract "We consider the eigenvalues and eigenvectors of finite, low rank perturbations of random matrices. Specifically, we prove almost sure convergence of the extreme eigenvalues and appropriate projections of the corresponding eigenvectors of the perturbed matrix for additive and multiplicative perturbation models. The limiting non-random value is shown to depend explicitly on the limiting eigenvalue distribution of the unperturbed random matrix and the assumed perturbation model via integral transforms that correspond to very well known objects in free probability theory that linearize non-commutative free additive and multiplicative convolution. Furthermore, we uncover a phase transition phenomenon whereby the large matrix limit of the extreme eigenvalues of the perturbed matrix differs from that of the original matrix if and only if the eigenvalues of the perturbing matrix are above a certain critical threshold. Square root decay of the eigenvalue density at the edge is sufficient to ensure that this threshold is finite. This critical threshold is intimately related to the same aforementioned integral transforms and our proof techniques bring this connection and the origin of the phase transition into focus. Consequently, our results extend the class of `spiked' random matrix models about which such predictions (called the BBP phase transition) can be made well beyond the Wigner, Wishart and Jacobi random ensembles found in the literature. We examine the impact of this eigenvalue phase transition on the associated eigenvectors and observe an analogous phase transition in the eigenvectors. Various extensions of our results to the problem of non-extreme eigenvalues are discussed." @default.
- W4306254823 created "2022-10-15" @default.
- W4306254823 creator A5009486575 @default.
- W4306254823 creator A5071117473 @default.
- W4306254823 date "2009-10-12" @default.
- W4306254823 modified "2023-09-27" @default.
- W4306254823 title "The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices" @default.
- W4306254823 doi "https://doi.org/10.48550/arxiv.0910.2120" @default.
- W4306254823 hasPublicationYear "2009" @default.
- W4306254823 type Work @default.
- W4306254823 citedByCount "0" @default.
- W4306254823 crossrefType "posted-content" @default.
- W4306254823 hasAuthorship W4306254823A5009486575 @default.
- W4306254823 hasAuthorship W4306254823A5071117473 @default.
- W4306254823 hasBestOaLocation W43062548231 @default.
- W4306254823 hasConcept C106487976 @default.
- W4306254823 hasConcept C121332964 @default.
- W4306254823 hasConcept C134306372 @default.
- W4306254823 hasConcept C158693339 @default.
- W4306254823 hasConcept C159985019 @default.
- W4306254823 hasConcept C192562407 @default.
- W4306254823 hasConcept C202444582 @default.
- W4306254823 hasConcept C30072841 @default.
- W4306254823 hasConcept C33923547 @default.
- W4306254823 hasConcept C36967811 @default.
- W4306254823 hasConcept C42747912 @default.
- W4306254823 hasConcept C46865736 @default.
- W4306254823 hasConcept C54848796 @default.
- W4306254823 hasConcept C62520636 @default.
- W4306254823 hasConcept C64812099 @default.
- W4306254823 hasConcept C65203669 @default.
- W4306254823 hasConceptScore W4306254823C106487976 @default.
- W4306254823 hasConceptScore W4306254823C121332964 @default.
- W4306254823 hasConceptScore W4306254823C134306372 @default.
- W4306254823 hasConceptScore W4306254823C158693339 @default.
- W4306254823 hasConceptScore W4306254823C159985019 @default.
- W4306254823 hasConceptScore W4306254823C192562407 @default.
- W4306254823 hasConceptScore W4306254823C202444582 @default.
- W4306254823 hasConceptScore W4306254823C30072841 @default.
- W4306254823 hasConceptScore W4306254823C33923547 @default.
- W4306254823 hasConceptScore W4306254823C36967811 @default.
- W4306254823 hasConceptScore W4306254823C42747912 @default.
- W4306254823 hasConceptScore W4306254823C46865736 @default.
- W4306254823 hasConceptScore W4306254823C54848796 @default.
- W4306254823 hasConceptScore W4306254823C62520636 @default.
- W4306254823 hasConceptScore W4306254823C64812099 @default.
- W4306254823 hasConceptScore W4306254823C65203669 @default.
- W4306254823 hasLocation W43062548231 @default.
- W4306254823 hasLocation W43062548232 @default.
- W4306254823 hasLocation W43062548233 @default.
- W4306254823 hasLocation W43062548234 @default.
- W4306254823 hasLocation W43062548235 @default.
- W4306254823 hasOpenAccess W4306254823 @default.
- W4306254823 hasPrimaryLocation W43062548231 @default.
- W4306254823 hasRelatedWork W1987289599 @default.
- W4306254823 hasRelatedWork W2090191137 @default.
- W4306254823 hasRelatedWork W2099551908 @default.
- W4306254823 hasRelatedWork W2288649731 @default.
- W4306254823 hasRelatedWork W2950913656 @default.
- W4306254823 hasRelatedWork W3025891665 @default.
- W4306254823 hasRelatedWork W40999357 @default.
- W4306254823 hasRelatedWork W4299842015 @default.
- W4306254823 hasRelatedWork W4306254823 @default.
- W4306254823 hasRelatedWork W4312515537 @default.
- W4306254823 isParatext "false" @default.
- W4306254823 isRetracted "false" @default.
- W4306254823 workType "article" @default.