Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306290798> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4306290798 abstract "Abstract Background Monomorphic ventricular tachycardia (VT) is a potentially life-threatening condition. Although radiofrequency catheter ablation represents an effective treatment method for many of these patients, significant variability is observed in postprocedural mortality, which is attributable to multiple factors, including the high burden of comorbidities. Therefore, there is a great demand for an accurate risk stratification system. Purpose We sought to implement a machine learning pipeline to predict 1-year all-cause mortality in patients undergoing VT ablation. Methods For 265 consecutive patients who underwent VT ablation at our center, we retrospectively collected demographics, medical history, cardiovascular risk factors, laboratory results, echocardiographic measurements, and VT ablation-related parameters. To predict 1-year all-cause mortality based on these features, several supervised machine learning models were trained and evaluated using 5-fold cross-validation. We applied a recursive elimination technique to identify the optimal subset of input features. The area under the receiver operating characteristic curve (AUC) with a 95% confidence interval (CI) was calculated to quantify the models' performance. We also identified the most important predictors of mortality using Shapley values. As the final step, we used topological data analysis to discern and visualize patient subgroups with different mortality risk. Results 57 (22%) patients died during the 1-year follow-up period. In predicting all-cause mortality, the best performance was achieved by a random forest model utilizing 18 input features [AUC: 0.73 (95% CI: 0.68–0.78)]. This model significantly outperformed other previously published risk scores such as the I-VT [AUC: 0.63 (95% CI: 0.55–0.70), p<0.001 vs. random forest] or the PAINESD [AUC: 0.63 (95% CI: 0.55–0.71), p=0.009 vs. random forest]. The most important predictors of mortality were mitral E-wave deceleration time, cardiac resynchronization therapy, age, electrical storm, and hemoglobin concentration. In the topological network created based on the 18 input features of the best-performing random forest model, we could identify five patient subsets with different clinical characteristics and 1-year mortality rates (Figure 1). Conclusions Our machine learning model could efficiently predict 1-year all-cause mortality in patients undergoing VT ablation. Thus, it could facilitate the prompt identification of high-risk patients and the personalization of treatment and follow-up strategies, ultimately leading to improved outcomes. Funding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): National Heart Program, as part of the National Research, Development and Innovation Fund of HungaryThematic Excellence Programme of the Ministry for Innovation and Technology in Hungary" @default.
- W4306290798 created "2022-10-15" @default.
- W4306290798 creator A5002033439 @default.
- W4306290798 creator A5009239465 @default.
- W4306290798 creator A5015225256 @default.
- W4306290798 creator A5022634648 @default.
- W4306290798 creator A5031862420 @default.
- W4306290798 creator A5055805891 @default.
- W4306290798 creator A5058403826 @default.
- W4306290798 creator A5059705944 @default.
- W4306290798 creator A5059972228 @default.
- W4306290798 creator A5063579132 @default.
- W4306290798 creator A5066052803 @default.
- W4306290798 creator A5070256869 @default.
- W4306290798 creator A5071844067 @default.
- W4306290798 creator A5078204647 @default.
- W4306290798 creator A5085229312 @default.
- W4306290798 date "2022-10-01" @default.
- W4306290798 modified "2023-10-06" @default.
- W4306290798 title "Machine learning based risk stratification of patients undergoing ventricular tachycardia ablation" @default.
- W4306290798 doi "https://doi.org/10.1093/eurheartj/ehac544.695" @default.
- W4306290798 hasPublicationYear "2022" @default.
- W4306290798 type Work @default.
- W4306290798 citedByCount "0" @default.
- W4306290798 crossrefType "journal-article" @default.
- W4306290798 hasAuthorship W4306290798A5002033439 @default.
- W4306290798 hasAuthorship W4306290798A5009239465 @default.
- W4306290798 hasAuthorship W4306290798A5015225256 @default.
- W4306290798 hasAuthorship W4306290798A5022634648 @default.
- W4306290798 hasAuthorship W4306290798A5031862420 @default.
- W4306290798 hasAuthorship W4306290798A5055805891 @default.
- W4306290798 hasAuthorship W4306290798A5058403826 @default.
- W4306290798 hasAuthorship W4306290798A5059705944 @default.
- W4306290798 hasAuthorship W4306290798A5059972228 @default.
- W4306290798 hasAuthorship W4306290798A5063579132 @default.
- W4306290798 hasAuthorship W4306290798A5066052803 @default.
- W4306290798 hasAuthorship W4306290798A5070256869 @default.
- W4306290798 hasAuthorship W4306290798A5071844067 @default.
- W4306290798 hasAuthorship W4306290798A5078204647 @default.
- W4306290798 hasAuthorship W4306290798A5085229312 @default.
- W4306290798 hasBestOaLocation W43062907981 @default.
- W4306290798 hasConcept C11783203 @default.
- W4306290798 hasConcept C119857082 @default.
- W4306290798 hasConcept C126322002 @default.
- W4306290798 hasConcept C164705383 @default.
- W4306290798 hasConcept C2776131983 @default.
- W4306290798 hasConcept C2776331378 @default.
- W4306290798 hasConcept C2778902805 @default.
- W4306290798 hasConcept C2779134260 @default.
- W4306290798 hasConcept C3020404979 @default.
- W4306290798 hasConcept C41008148 @default.
- W4306290798 hasConcept C44249647 @default.
- W4306290798 hasConcept C58471807 @default.
- W4306290798 hasConcept C71924100 @default.
- W4306290798 hasConcept C76318530 @default.
- W4306290798 hasConceptScore W4306290798C11783203 @default.
- W4306290798 hasConceptScore W4306290798C119857082 @default.
- W4306290798 hasConceptScore W4306290798C126322002 @default.
- W4306290798 hasConceptScore W4306290798C164705383 @default.
- W4306290798 hasConceptScore W4306290798C2776131983 @default.
- W4306290798 hasConceptScore W4306290798C2776331378 @default.
- W4306290798 hasConceptScore W4306290798C2778902805 @default.
- W4306290798 hasConceptScore W4306290798C2779134260 @default.
- W4306290798 hasConceptScore W4306290798C3020404979 @default.
- W4306290798 hasConceptScore W4306290798C41008148 @default.
- W4306290798 hasConceptScore W4306290798C44249647 @default.
- W4306290798 hasConceptScore W4306290798C58471807 @default.
- W4306290798 hasConceptScore W4306290798C71924100 @default.
- W4306290798 hasConceptScore W4306290798C76318530 @default.
- W4306290798 hasIssue "Supplement_2" @default.
- W4306290798 hasLocation W43062907981 @default.
- W4306290798 hasOpenAccess W4306290798 @default.
- W4306290798 hasPrimaryLocation W43062907981 @default.
- W4306290798 hasRelatedWork W1946146225 @default.
- W4306290798 hasRelatedWork W2033888109 @default.
- W4306290798 hasRelatedWork W2084468244 @default.
- W4306290798 hasRelatedWork W2319682213 @default.
- W4306290798 hasRelatedWork W2607902594 @default.
- W4306290798 hasRelatedWork W2969885920 @default.
- W4306290798 hasRelatedWork W3161561274 @default.
- W4306290798 hasRelatedWork W4312070974 @default.
- W4306290798 hasRelatedWork W4313388597 @default.
- W4306290798 hasRelatedWork W885932133 @default.
- W4306290798 hasVolume "43" @default.
- W4306290798 isParatext "false" @default.
- W4306290798 isRetracted "false" @default.
- W4306290798 workType "article" @default.