Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306291311> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4306291311 abstract "Abstract Background Unsupervised machine learning has the potential to identify new cardiovascular phenotypes and more accurately assess individual risk in an unbiased fashion. Purpose We aimed to use unsupervised learning to identify, analyze, and risk-stratify subgroups of patients with normal perfusion by visual interpretation on single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Methods We included consecutive patients with visual normal clinical assessment (summed stress score of 0) from the multicenter (9 sites), REFINE SPECT registry. We considered 23 clinical, 17 image-acquisition, and 26 imaging variables. Optimal dimensionality reduction (Uniform Manifold Approximation and Projection), clustering (Gaussian Mixture Model), and number of clusters were selected to maximize the silhouette coefficient (how similar a patient is to those in their own cluster compared to other clusters). Risk stratification for all-cause mortality (ACM) and major adverse cardiac events (MACE) was assessed within these clusters and compared to risk stratification by quantitative ischemia (<5%, 5–10%, >10%) using Kaplan-Meier curves and Cox Proportional-Hazards analysis. Results In total, 17,527 (of 30,351) patients in the registry had visually normal perfusion, 49.7% female, median age of 64 [55, 72] years. There were 1,138 ACM events and 2,091 MACE events with a median follow-up of 4.1 [2.9, 5.7] years. Unsupervised learning provided better risk stratification for both ACM and MACE compared to quantitative ischemia (Figure). Notably, the high-risk cluster by unsupervised learning had a hazard ratio (HR) of 9.5 (95% confidence interval [CI]: 7.7–11.7) compared to 1.4 (95% CI: 1.1–1.9) for quantitative ischemia >10%. The high-risk cluster had proportionally more women (45% [low-risk], 51% [medium-risk], 57% [high-risk], all p<0.001), higher body mass indices (26.9, 27.4, 29.6, all p<0.001), prevalence of diabetes (17%, 22%, 33%, all p<0.001), and abnormal rest ECGs (30%, 43%, 64%, p<0.001); with lower rates of family history of coronary artery disease (40%, 33%, 24%, p<0.001). Patients in the low-risk cluster were more likely to undergo exercise stress (100%, 38%, 0%, all p<0.001), had lower rest peak systolic blood pressure (130, 131, 140 mmHg, all p<0.001), and higher stress peak systolic blood pressure (164, 150, 131 mmHg, all p<0.001). Patients in the high-risk cluster had higher left ventricular mass (129, 135.45, 143.9 g, all p<0.001) and stress volume (57, 59, 66 ml, all p<0.001). Conclusion Unsupervised learning identified new phenotypic clusters for SPECT MPI patients with visual normal assessments which provided improved risk stratification for ACM and MACE compared to SPECT ischemia. Such individualized risk assessment may allow better targeted management of patients with visually normal perfusion. Funding Acknowledgement Type of funding sources: Public Institution(s). Main funding source(s): Research reported in this publication was supported by the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Number R01HL089765. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health." @default.
- W4306291311 created "2022-10-15" @default.
- W4306291311 creator A5005874677 @default.
- W4306291311 creator A5009524117 @default.
- W4306291311 creator A5030567395 @default.
- W4306291311 creator A5033582469 @default.
- W4306291311 creator A5043786041 @default.
- W4306291311 creator A5049845678 @default.
- W4306291311 creator A5051581497 @default.
- W4306291311 creator A5061044309 @default.
- W4306291311 creator A5065496916 @default.
- W4306291311 creator A5068824660 @default.
- W4306291311 creator A5070896042 @default.
- W4306291311 creator A5081711625 @default.
- W4306291311 creator A5084271696 @default.
- W4306291311 creator A5085018719 @default.
- W4306291311 creator A5089597276 @default.
- W4306291311 date "2022-10-01" @default.
- W4306291311 modified "2023-09-27" @default.
- W4306291311 title "Unsupervised machine learning improves risk stratification of patients with visual normal SPECT myocardial perfusion imaging assessments" @default.
- W4306291311 doi "https://doi.org/10.1093/eurheartj/ehac544.300" @default.
- W4306291311 hasPublicationYear "2022" @default.
- W4306291311 type Work @default.
- W4306291311 citedByCount "0" @default.
- W4306291311 crossrefType "journal-article" @default.
- W4306291311 hasAuthorship W4306291311A5005874677 @default.
- W4306291311 hasAuthorship W4306291311A5009524117 @default.
- W4306291311 hasAuthorship W4306291311A5030567395 @default.
- W4306291311 hasAuthorship W4306291311A5033582469 @default.
- W4306291311 hasAuthorship W4306291311A5043786041 @default.
- W4306291311 hasAuthorship W4306291311A5049845678 @default.
- W4306291311 hasAuthorship W4306291311A5051581497 @default.
- W4306291311 hasAuthorship W4306291311A5061044309 @default.
- W4306291311 hasAuthorship W4306291311A5065496916 @default.
- W4306291311 hasAuthorship W4306291311A5068824660 @default.
- W4306291311 hasAuthorship W4306291311A5070896042 @default.
- W4306291311 hasAuthorship W4306291311A5081711625 @default.
- W4306291311 hasAuthorship W4306291311A5084271696 @default.
- W4306291311 hasAuthorship W4306291311A5085018719 @default.
- W4306291311 hasAuthorship W4306291311A5089597276 @default.
- W4306291311 hasBestOaLocation W43062913111 @default.
- W4306291311 hasConcept C126322002 @default.
- W4306291311 hasConcept C146957229 @default.
- W4306291311 hasConcept C154945302 @default.
- W4306291311 hasConcept C164705383 @default.
- W4306291311 hasConcept C207103383 @default.
- W4306291311 hasConcept C2778405248 @default.
- W4306291311 hasConcept C2780400711 @default.
- W4306291311 hasConcept C2780441642 @default.
- W4306291311 hasConcept C2780739214 @default.
- W4306291311 hasConcept C3020404979 @default.
- W4306291311 hasConcept C41008148 @default.
- W4306291311 hasConcept C44249647 @default.
- W4306291311 hasConcept C500558357 @default.
- W4306291311 hasConcept C50382708 @default.
- W4306291311 hasConcept C58103923 @default.
- W4306291311 hasConcept C71924100 @default.
- W4306291311 hasConcept C73555534 @default.
- W4306291311 hasConcept C8038995 @default.
- W4306291311 hasConceptScore W4306291311C126322002 @default.
- W4306291311 hasConceptScore W4306291311C146957229 @default.
- W4306291311 hasConceptScore W4306291311C154945302 @default.
- W4306291311 hasConceptScore W4306291311C164705383 @default.
- W4306291311 hasConceptScore W4306291311C207103383 @default.
- W4306291311 hasConceptScore W4306291311C2778405248 @default.
- W4306291311 hasConceptScore W4306291311C2780400711 @default.
- W4306291311 hasConceptScore W4306291311C2780441642 @default.
- W4306291311 hasConceptScore W4306291311C2780739214 @default.
- W4306291311 hasConceptScore W4306291311C3020404979 @default.
- W4306291311 hasConceptScore W4306291311C41008148 @default.
- W4306291311 hasConceptScore W4306291311C44249647 @default.
- W4306291311 hasConceptScore W4306291311C500558357 @default.
- W4306291311 hasConceptScore W4306291311C50382708 @default.
- W4306291311 hasConceptScore W4306291311C58103923 @default.
- W4306291311 hasConceptScore W4306291311C71924100 @default.
- W4306291311 hasConceptScore W4306291311C73555534 @default.
- W4306291311 hasConceptScore W4306291311C8038995 @default.
- W4306291311 hasIssue "Supplement_2" @default.
- W4306291311 hasLocation W43062913111 @default.
- W4306291311 hasOpenAccess W4306291311 @default.
- W4306291311 hasPrimaryLocation W43062913111 @default.
- W4306291311 hasRelatedWork W2020050573 @default.
- W4306291311 hasRelatedWork W2062998766 @default.
- W4306291311 hasRelatedWork W2072670293 @default.
- W4306291311 hasRelatedWork W2084275690 @default.
- W4306291311 hasRelatedWork W2089715561 @default.
- W4306291311 hasRelatedWork W2130716901 @default.
- W4306291311 hasRelatedWork W2803714001 @default.
- W4306291311 hasRelatedWork W3146182361 @default.
- W4306291311 hasRelatedWork W4283267805 @default.
- W4306291311 hasRelatedWork W4306291311 @default.
- W4306291311 hasVolume "43" @default.
- W4306291311 isParatext "false" @default.
- W4306291311 isRetracted "false" @default.
- W4306291311 workType "article" @default.