Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306293881> ?p ?o ?g. }
- W4306293881 endingPage "125704" @default.
- W4306293881 startingPage "125704" @default.
- W4306293881 abstract "Due to the enormous building stock and high energy consumption of the construction sector, green retrofitting of existing buildings has recently become a critical issue. China has implemented building retrofitting on a large scale based on various norms and standards. In practice, however, the effectiveness of the whole building retrofit program is often jeopardized because some decision-makers are limited by their experience and fail to evaluate the program in its entirety. To overcome this problem, this study offers an intelligent decision support model considering tacit knowledge for program decision-making with conflicting objectives. By comparing several data mining approaches and using 152 retrofitted existing buildings as examples, a tacit knowledge mining model based on the XGBoost algorithm with an accuracy of 73.91% is constructed. The predicted results of the knowledge mining model can be used as the input of the multi-objective decision-making model. In addition, the retrofit cost, thermal insulation requirement, and total retrofit area are chosen as the objectives of the multi-objective decision-making model. Then, the model's applicability to building retrofit programs is tested using five buildings as examples. Finally, the results demonstrate that the proposed model can partially replace experts in supporting policymakers and owners throughout the planning stage." @default.
- W4306293881 created "2022-10-15" @default.
- W4306293881 creator A5003679114 @default.
- W4306293881 creator A5007059118 @default.
- W4306293881 creator A5032396875 @default.
- W4306293881 creator A5053311132 @default.
- W4306293881 date "2023-01-01" @default.
- W4306293881 modified "2023-09-27" @default.
- W4306293881 title "An intelligent retrofit decision-making model for building program planning considering tacit knowledge and multiple objectives" @default.
- W4306293881 cites W1668762951 @default.
- W4306293881 cites W1760697510 @default.
- W4306293881 cites W1775272390 @default.
- W4306293881 cites W1882309942 @default.
- W4306293881 cites W1964940342 @default.
- W4306293881 cites W1981264004 @default.
- W4306293881 cites W1986388258 @default.
- W4306293881 cites W1987706613 @default.
- W4306293881 cites W1992120390 @default.
- W4306293881 cites W2001259880 @default.
- W4306293881 cites W2007176820 @default.
- W4306293881 cites W2032811383 @default.
- W4306293881 cites W2038732009 @default.
- W4306293881 cites W2049248576 @default.
- W4306293881 cites W2060639937 @default.
- W4306293881 cites W2061719980 @default.
- W4306293881 cites W2068232986 @default.
- W4306293881 cites W2072462334 @default.
- W4306293881 cites W2077011856 @default.
- W4306293881 cites W2079279458 @default.
- W4306293881 cites W2079847520 @default.
- W4306293881 cites W2080562691 @default.
- W4306293881 cites W2080877209 @default.
- W4306293881 cites W2091605322 @default.
- W4306293881 cites W2106815225 @default.
- W4306293881 cites W2125283600 @default.
- W4306293881 cites W2140260497 @default.
- W4306293881 cites W2141181637 @default.
- W4306293881 cites W2161321743 @default.
- W4306293881 cites W2164709595 @default.
- W4306293881 cites W2170505850 @default.
- W4306293881 cites W2294173671 @default.
- W4306293881 cites W2296781451 @default.
- W4306293881 cites W2343002272 @default.
- W4306293881 cites W2436678264 @default.
- W4306293881 cites W2460994027 @default.
- W4306293881 cites W2564023355 @default.
- W4306293881 cites W2573353973 @default.
- W4306293881 cites W2739981372 @default.
- W4306293881 cites W2756237131 @default.
- W4306293881 cites W2770648576 @default.
- W4306293881 cites W2775509371 @default.
- W4306293881 cites W2782959635 @default.
- W4306293881 cites W2804602001 @default.
- W4306293881 cites W2806066720 @default.
- W4306293881 cites W2901040511 @default.
- W4306293881 cites W2911964244 @default.
- W4306293881 cites W2913735362 @default.
- W4306293881 cites W2921516590 @default.
- W4306293881 cites W2933317961 @default.
- W4306293881 cites W2943186895 @default.
- W4306293881 cites W2945101387 @default.
- W4306293881 cites W2950545742 @default.
- W4306293881 cites W2951701500 @default.
- W4306293881 cites W2953959218 @default.
- W4306293881 cites W2964938350 @default.
- W4306293881 cites W2966150330 @default.
- W4306293881 cites W3007814546 @default.
- W4306293881 cites W3022955483 @default.
- W4306293881 cites W3025363454 @default.
- W4306293881 cites W3029951939 @default.
- W4306293881 cites W3035353528 @default.
- W4306293881 cites W3080409317 @default.
- W4306293881 cites W3083964105 @default.
- W4306293881 cites W3084317468 @default.
- W4306293881 cites W3088138151 @default.
- W4306293881 cites W3089997699 @default.
- W4306293881 cites W3096533084 @default.
- W4306293881 cites W3107568551 @default.
- W4306293881 cites W3109804468 @default.
- W4306293881 cites W3119264633 @default.
- W4306293881 cites W3131783598 @default.
- W4306293881 cites W3137868186 @default.
- W4306293881 cites W3158869325 @default.
- W4306293881 cites W3166911394 @default.
- W4306293881 cites W3191161603 @default.
- W4306293881 cites W3205589517 @default.
- W4306293881 cites W3215197636 @default.
- W4306293881 cites W4220941015 @default.
- W4306293881 cites W4226475795 @default.
- W4306293881 cites W4384637928 @default.
- W4306293881 cites W3011988108 @default.
- W4306293881 doi "https://doi.org/10.1016/j.energy.2022.125704" @default.
- W4306293881 hasPublicationYear "2023" @default.
- W4306293881 type Work @default.
- W4306293881 citedByCount "4" @default.
- W4306293881 countsByYear W43062938812023 @default.
- W4306293881 crossrefType "journal-article" @default.
- W4306293881 hasAuthorship W4306293881A5003679114 @default.