Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306294804> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4306294804 abstract "We explore machine learning-based jet and event identification at the future Electron-Ion Collider (EIC). We study the effectiveness of machine learning-based classifiers at relatively low EIC energies, focusing on (i) identifying the flavor of the jet and (ii) identifying the underlying hard process of the event. We propose applications of our machine learning-based jet identification in the key research areas at the future EIC and current Relativistic Heavy Ion Collider program, including enhancing constraints on (transverse momentum dependent) parton distribution functions, improving experimental access to transverse spin asymmetries, studying photon structure, and quantifying the modification of hadrons and jets in the cold nuclear matter environment in electron-nucleus collisions. We establish first benchmarks and contrast the estimated performance of flavor tagging at the EIC with that at the Large Hadron Collider. We perform studies relevant to aspects of detector design including particle identification, charge information, and minimum transverse momentum capabilities. Additionally, we study the impact of using full event information instead of using only information associated with the identified jet. These methods can be deployed either on suitably accurate Monte Carlo event generators, or, for several applications, directly on experimental data. We provide an outlook for ultimately connecting these machine learning-based methods with first principles calculations in quantum chromodynamics." @default.
- W4306294804 created "2022-10-15" @default.
- W4306294804 creator A5017161034 @default.
- W4306294804 creator A5039084645 @default.
- W4306294804 creator A5044544406 @default.
- W4306294804 creator A5074408261 @default.
- W4306294804 creator A5091905938 @default.
- W4306294804 date "2022-10-12" @default.
- W4306294804 modified "2023-10-16" @default.
- W4306294804 title "Machine learning-based jet and event classification at the Electron-Ion Collider with applications to hadron structure and spin physics" @default.
- W4306294804 doi "https://doi.org/10.48550/arxiv.2210.06450" @default.
- W4306294804 hasPublicationYear "2022" @default.
- W4306294804 type Work @default.
- W4306294804 citedByCount "0" @default.
- W4306294804 crossrefType "posted-content" @default.
- W4306294804 hasAuthorship W4306294804A5017161034 @default.
- W4306294804 hasAuthorship W4306294804A5039084645 @default.
- W4306294804 hasAuthorship W4306294804A5044544406 @default.
- W4306294804 hasAuthorship W4306294804A5074408261 @default.
- W4306294804 hasAuthorship W4306294804A5091905938 @default.
- W4306294804 hasBestOaLocation W43062948041 @default.
- W4306294804 hasConcept C109214941 @default.
- W4306294804 hasConcept C119947313 @default.
- W4306294804 hasConcept C120665830 @default.
- W4306294804 hasConcept C121332964 @default.
- W4306294804 hasConcept C145148216 @default.
- W4306294804 hasConcept C152290109 @default.
- W4306294804 hasConcept C180566339 @default.
- W4306294804 hasConcept C185544564 @default.
- W4306294804 hasConcept C19694890 @default.
- W4306294804 hasConcept C2775853353 @default.
- W4306294804 hasConcept C2779510917 @default.
- W4306294804 hasConcept C2779662365 @default.
- W4306294804 hasConcept C2780765408 @default.
- W4306294804 hasConcept C2988362075 @default.
- W4306294804 hasConcept C62520636 @default.
- W4306294804 hasConcept C87668248 @default.
- W4306294804 hasConcept C94915269 @default.
- W4306294804 hasConcept C97355855 @default.
- W4306294804 hasConceptScore W4306294804C109214941 @default.
- W4306294804 hasConceptScore W4306294804C119947313 @default.
- W4306294804 hasConceptScore W4306294804C120665830 @default.
- W4306294804 hasConceptScore W4306294804C121332964 @default.
- W4306294804 hasConceptScore W4306294804C145148216 @default.
- W4306294804 hasConceptScore W4306294804C152290109 @default.
- W4306294804 hasConceptScore W4306294804C180566339 @default.
- W4306294804 hasConceptScore W4306294804C185544564 @default.
- W4306294804 hasConceptScore W4306294804C19694890 @default.
- W4306294804 hasConceptScore W4306294804C2775853353 @default.
- W4306294804 hasConceptScore W4306294804C2779510917 @default.
- W4306294804 hasConceptScore W4306294804C2779662365 @default.
- W4306294804 hasConceptScore W4306294804C2780765408 @default.
- W4306294804 hasConceptScore W4306294804C2988362075 @default.
- W4306294804 hasConceptScore W4306294804C62520636 @default.
- W4306294804 hasConceptScore W4306294804C87668248 @default.
- W4306294804 hasConceptScore W4306294804C94915269 @default.
- W4306294804 hasConceptScore W4306294804C97355855 @default.
- W4306294804 hasLocation W43062948041 @default.
- W4306294804 hasOpenAccess W4306294804 @default.
- W4306294804 hasPrimaryLocation W43062948041 @default.
- W4306294804 hasRelatedWork W1651024575 @default.
- W4306294804 hasRelatedWork W2026726277 @default.
- W4306294804 hasRelatedWork W2099429298 @default.
- W4306294804 hasRelatedWork W2370883536 @default.
- W4306294804 hasRelatedWork W2555707980 @default.
- W4306294804 hasRelatedWork W2944429201 @default.
- W4306294804 hasRelatedWork W2963926750 @default.
- W4306294804 hasRelatedWork W3098518643 @default.
- W4306294804 hasRelatedWork W3125241435 @default.
- W4306294804 hasRelatedWork W3141524227 @default.
- W4306294804 isParatext "false" @default.
- W4306294804 isRetracted "false" @default.
- W4306294804 workType "article" @default.