Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306353732> ?p ?o ?g. }
- W4306353732 endingPage "633" @default.
- W4306353732 startingPage "611" @default.
- W4306353732 abstract "Negative correlations in the sequential evolution of interspike intervals (ISIs) are a signature of memory in neuronal spike-trains. They provide coding benefits including firing-rate stabilization, improved detectability of weak sensory signals, and enhanced transmission of information by improving signal-to-noise ratio. Primary electrosensory afferent spike-trains in weakly electric fish fall into two categories based on the pattern of ISI correlations: non-bursting units have negative correlations which remain negative but decay to zero with increasing lags (Type I ISI correlations), and bursting units have oscillatory (alternating sign) correlation which damp to zero with increasing lags (Type II ISI correlations). Here, we predict and match observed ISI correlations in these afferents using a stochastic dynamic threshold model. We determine the ISI correlation function as a function of an arbitrary discrete noise correlation function [Formula: see text], where k is a multiple of the mean ISI. The function permits forward and inverse calculations of the correlation function. Both types of correlation functions can be generated by adding colored noise to the spike threshold with Type I correlations generated with slow noise and Type II correlations generated with fast noise. A first-order autoregressive (AR) process with a single parameter is sufficient to predict and accurately match both types of afferent ISI correlation functions, with the type being determined by the sign of the AR parameter. The predicted and experimentally observed correlations are in geometric progression. The theory predicts that the limiting sum of ISI correlations is [Formula: see text] yielding a perfect DC-block in the power spectrum of the spike train. Observed ISI correlations from afferents have a limiting sum that is slightly larger at [Formula: see text] ([Formula: see text]). We conclude that the underlying process for generating ISIs may be a simple combination of low-order AR and moving average processes and discuss the results from the perspective of optimal coding." @default.
- W4306353732 created "2022-10-16" @default.
- W4306353732 creator A5011788327 @default.
- W4306353732 creator A5037437190 @default.
- W4306353732 creator A5062617311 @default.
- W4306353732 creator A5082033044 @default.
- W4306353732 date "2022-10-16" @default.
- W4306353732 modified "2023-10-14" @default.
- W4306353732 title "A dynamic spike threshold with correlated noise predicts observed patterns of negative interval correlations in neuronal spike trains" @default.
- W4306353732 cites W1497599289 @default.
- W4306353732 cites W1573874355 @default.
- W4306353732 cites W159911242 @default.
- W4306353732 cites W1650019033 @default.
- W4306353732 cites W1735445987 @default.
- W4306353732 cites W174274512 @default.
- W4306353732 cites W1853006911 @default.
- W4306353732 cites W1964812021 @default.
- W4306353732 cites W1966545408 @default.
- W4306353732 cites W1974404366 @default.
- W4306353732 cites W1980773744 @default.
- W4306353732 cites W1986263245 @default.
- W4306353732 cites W1988174655 @default.
- W4306353732 cites W1997755397 @default.
- W4306353732 cites W2015791727 @default.
- W4306353732 cites W2020285738 @default.
- W4306353732 cites W2023913445 @default.
- W4306353732 cites W2025881996 @default.
- W4306353732 cites W2027173466 @default.
- W4306353732 cites W2028329703 @default.
- W4306353732 cites W2034108404 @default.
- W4306353732 cites W2042422091 @default.
- W4306353732 cites W2043683314 @default.
- W4306353732 cites W2046043350 @default.
- W4306353732 cites W2048756013 @default.
- W4306353732 cites W2048812218 @default.
- W4306353732 cites W2059690890 @default.
- W4306353732 cites W2062899906 @default.
- W4306353732 cites W2071250994 @default.
- W4306353732 cites W2072334497 @default.
- W4306353732 cites W2081117504 @default.
- W4306353732 cites W2081338451 @default.
- W4306353732 cites W2089024430 @default.
- W4306353732 cites W2090114159 @default.
- W4306353732 cites W2091127782 @default.
- W4306353732 cites W2094677279 @default.
- W4306353732 cites W2104835956 @default.
- W4306353732 cites W2110090036 @default.
- W4306353732 cites W2110316244 @default.
- W4306353732 cites W2112136490 @default.
- W4306353732 cites W2112236588 @default.
- W4306353732 cites W2122939427 @default.
- W4306353732 cites W2124398758 @default.
- W4306353732 cites W2126945096 @default.
- W4306353732 cites W2129688844 @default.
- W4306353732 cites W2130302656 @default.
- W4306353732 cites W2138145511 @default.
- W4306353732 cites W2140205757 @default.
- W4306353732 cites W2142329149 @default.
- W4306353732 cites W2146508384 @default.
- W4306353732 cites W2149163831 @default.
- W4306353732 cites W2149618862 @default.
- W4306353732 cites W2160988512 @default.
- W4306353732 cites W2161578878 @default.
- W4306353732 cites W2164386659 @default.
- W4306353732 cites W2171849804 @default.
- W4306353732 cites W2242883496 @default.
- W4306353732 cites W2276255716 @default.
- W4306353732 cites W2317439733 @default.
- W4306353732 cites W2321124279 @default.
- W4306353732 cites W2333276411 @default.
- W4306353732 cites W2409262432 @default.
- W4306353732 cites W2416226163 @default.
- W4306353732 cites W2473352507 @default.
- W4306353732 cites W2474373882 @default.
- W4306353732 cites W2571918371 @default.
- W4306353732 cites W4238978417 @default.
- W4306353732 cites W4300126076 @default.
- W4306353732 doi "https://doi.org/10.1007/s00422-022-00946-5" @default.
- W4306353732 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36244004" @default.
- W4306353732 hasPublicationYear "2022" @default.
- W4306353732 type Work @default.
- W4306353732 citedByCount "0" @default.
- W4306353732 crossrefType "journal-article" @default.
- W4306353732 hasAuthorship W4306353732A5011788327 @default.
- W4306353732 hasAuthorship W4306353732A5037437190 @default.
- W4306353732 hasAuthorship W4306353732A5062617311 @default.
- W4306353732 hasAuthorship W4306353732A5082033044 @default.
- W4306353732 hasBestOaLocation W43063537321 @default.
- W4306353732 hasConcept C105795698 @default.
- W4306353732 hasConcept C115903868 @default.
- W4306353732 hasConcept C115961682 @default.
- W4306353732 hasConcept C117220453 @default.
- W4306353732 hasConcept C121332964 @default.
- W4306353732 hasConcept C121864883 @default.
- W4306353732 hasConcept C134306372 @default.
- W4306353732 hasConcept C139676723 @default.
- W4306353732 hasConcept C154945302 @default.
- W4306353732 hasConcept C159877910 @default.