Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306362178> ?p ?o ?g. }
- W4306362178 endingPage "10397" @default.
- W4306362178 startingPage "10397" @default.
- W4306362178 abstract "Helical anchors are widely used in engineering to resist tension, especially during offshore wind energy harvesting, and their uplift behavior in sand is influenced by many factors. Experimental studies are often used to investigate these anchors; however, scale effects are inevitable in 1× g model tests, soil conditions for in situ tests are challenging to control, and centrifuge tests are expensive and rare. To make full use of the limited valid data and to gain more knowledge about the uplift behaviors of helical anchors in sand, a prediction model integrating gradient-boosting decision trees (GBDT) and particle swarm optimization (PSO) was proposed in this study. Data obtained from a series of centrifuge tests formed the dataset of the prediction model. The relative density of soil, embedment ratio, helix spacing ratio, and the number of helices were used as input parameters, while the anchor mobilization distance and the ultimate monotonic uplift resistance were set as output parameters. A GBDT algorithm was used to construct the model, and a PSO algorithm was used for hyperparameter tuning. The results show that the optimal GBDT model accurately predicted the anchor mobilization distance and the ultimate monotonic uplift resistance of helical anchors in dense fine silica sand. By analyzing the relative importance of influencing variables, the embedment ratio was found to be the most significant variable in the model, while the relative density of the fine silica sand soil, the helix spacing ratio, and the number of helices had relatively minor influence. In particular, the helix spacing ratio was found to have no influence on the capacity of adjacent helices when S/D > 6." @default.
- W4306362178 created "2022-10-17" @default.
- W4306362178 creator A5018703950 @default.
- W4306362178 creator A5037364559 @default.
- W4306362178 creator A5041112199 @default.
- W4306362178 creator A5041132337 @default.
- W4306362178 creator A5059885036 @default.
- W4306362178 creator A5076341838 @default.
- W4306362178 date "2022-10-15" @default.
- W4306362178 modified "2023-10-16" @default.
- W4306362178 title "Efficient Machine Learning Models for the Uplift Behavior of Helical Anchors in Dense Sand for Wind Energy Harvesting" @default.
- W4306362178 cites W1594031697 @default.
- W4306362178 cites W1678356000 @default.
- W4306362178 cites W1836053840 @default.
- W4306362178 cites W1941135251 @default.
- W4306362178 cites W1964473693 @default.
- W4306362178 cites W1986348804 @default.
- W4306362178 cites W1994465193 @default.
- W4306362178 cites W2015037512 @default.
- W4306362178 cites W2024208491 @default.
- W4306362178 cites W2030947971 @default.
- W4306362178 cites W2037942342 @default.
- W4306362178 cites W2048151409 @default.
- W4306362178 cites W2054317969 @default.
- W4306362178 cites W2056071839 @default.
- W4306362178 cites W2058224488 @default.
- W4306362178 cites W2070638918 @default.
- W4306362178 cites W2086282769 @default.
- W4306362178 cites W2112315008 @default.
- W4306362178 cites W2120624381 @default.
- W4306362178 cites W2121250608 @default.
- W4306362178 cites W2121815422 @default.
- W4306362178 cites W2134220755 @default.
- W4306362178 cites W2166765999 @default.
- W4306362178 cites W2167849100 @default.
- W4306362178 cites W2340826226 @default.
- W4306362178 cites W2411316925 @default.
- W4306362178 cites W2497009587 @default.
- W4306362178 cites W2510300699 @default.
- W4306362178 cites W2768692478 @default.
- W4306362178 cites W2791884343 @default.
- W4306362178 cites W2897279155 @default.
- W4306362178 cites W2901133122 @default.
- W4306362178 cites W2922451909 @default.
- W4306362178 cites W2922490683 @default.
- W4306362178 cites W2930890426 @default.
- W4306362178 cites W2961904000 @default.
- W4306362178 cites W2963905884 @default.
- W4306362178 cites W3001782966 @default.
- W4306362178 cites W3020933622 @default.
- W4306362178 cites W3028410977 @default.
- W4306362178 cites W3035389179 @default.
- W4306362178 cites W3039109528 @default.
- W4306362178 cites W3093840165 @default.
- W4306362178 cites W3112964197 @default.
- W4306362178 cites W3135468375 @default.
- W4306362178 cites W3138703676 @default.
- W4306362178 cites W3154084040 @default.
- W4306362178 cites W3155346408 @default.
- W4306362178 cites W3159185355 @default.
- W4306362178 cites W3175823419 @default.
- W4306362178 cites W3195344581 @default.
- W4306362178 cites W3201345851 @default.
- W4306362178 cites W3214960982 @default.
- W4306362178 cites W4283384647 @default.
- W4306362178 cites W581820307 @default.
- W4306362178 doi "https://doi.org/10.3390/app122010397" @default.
- W4306362178 hasPublicationYear "2022" @default.
- W4306362178 type Work @default.
- W4306362178 citedByCount "1" @default.
- W4306362178 countsByYear W43063621782023 @default.
- W4306362178 crossrefType "journal-article" @default.
- W4306362178 hasAuthorship W4306362178A5018703950 @default.
- W4306362178 hasAuthorship W4306362178A5037364559 @default.
- W4306362178 hasAuthorship W4306362178A5041112199 @default.
- W4306362178 hasAuthorship W4306362178A5041132337 @default.
- W4306362178 hasAuthorship W4306362178A5059885036 @default.
- W4306362178 hasAuthorship W4306362178A5076341838 @default.
- W4306362178 hasBestOaLocation W43063621781 @default.
- W4306362178 hasConcept C11413529 @default.
- W4306362178 hasConcept C121332964 @default.
- W4306362178 hasConcept C127313418 @default.
- W4306362178 hasConcept C134306372 @default.
- W4306362178 hasConcept C185544564 @default.
- W4306362178 hasConcept C187320778 @default.
- W4306362178 hasConcept C2780657338 @default.
- W4306362178 hasConcept C33923547 @default.
- W4306362178 hasConcept C62464604 @default.
- W4306362178 hasConcept C72169020 @default.
- W4306362178 hasConcept C85617194 @default.
- W4306362178 hasConceptScore W4306362178C11413529 @default.
- W4306362178 hasConceptScore W4306362178C121332964 @default.
- W4306362178 hasConceptScore W4306362178C127313418 @default.
- W4306362178 hasConceptScore W4306362178C134306372 @default.
- W4306362178 hasConceptScore W4306362178C185544564 @default.
- W4306362178 hasConceptScore W4306362178C187320778 @default.
- W4306362178 hasConceptScore W4306362178C2780657338 @default.
- W4306362178 hasConceptScore W4306362178C33923547 @default.