Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306367123> ?p ?o ?g. }
- W4306367123 endingPage "5055" @default.
- W4306367123 startingPage "5055" @default.
- W4306367123 abstract "Neoadjuvant chemotherapy (NACT) is offered to patients with operable or inoperable breast cancer (BC) to downstage the disease. Clinical responses to NACT may vary depending on a few known clinical and biological features, but the diversity of responses to NACT is not fully understood. In this study, 80 women had their metabolite profiles of pre-treatment sera analyzed for potential NACT response biomarker candidates in combination with immunohistochemical parameters using Nuclear Magnetic Resonance (NMR). Sixty-four percent of the patients were resistant to chemotherapy. NMR, hormonal receptors (HR), human epidermal growth factor receptor 2 (HER2), and the nuclear protein Ki67 were combined through machine learning (ML) to predict the response to NACT. Metabolites such as leucine, formate, valine, and proline, along with hormone receptor status, were discriminants of response to NACT. The glyoxylate and dicarboxylate metabolism was found to be involved in the resistance to NACT. We obtained an accuracy in excess of 80% for the prediction of response to NACT combining metabolomic and tumor profile data. Our results suggest that NMR data can substantially enhance the prediction of response to NACT when used in combination with already known response prediction factors." @default.
- W4306367123 created "2022-10-17" @default.
- W4306367123 creator A5008448946 @default.
- W4306367123 creator A5020866353 @default.
- W4306367123 creator A5023723367 @default.
- W4306367123 creator A5025444343 @default.
- W4306367123 creator A5026989617 @default.
- W4306367123 creator A5027760047 @default.
- W4306367123 creator A5035607526 @default.
- W4306367123 creator A5036327267 @default.
- W4306367123 creator A5036845120 @default.
- W4306367123 creator A5043673692 @default.
- W4306367123 creator A5046173709 @default.
- W4306367123 creator A5047091139 @default.
- W4306367123 creator A5056420404 @default.
- W4306367123 creator A5060710157 @default.
- W4306367123 creator A5060845150 @default.
- W4306367123 creator A5061649209 @default.
- W4306367123 creator A5067083378 @default.
- W4306367123 creator A5070553172 @default.
- W4306367123 creator A5083808565 @default.
- W4306367123 creator A5090704383 @default.
- W4306367123 creator A5091140175 @default.
- W4306367123 date "2022-10-15" @default.
- W4306367123 modified "2023-10-06" @default.
- W4306367123 title "Metabolomics by NMR Combined with Machine Learning to Predict Neoadjuvant Chemotherapy Response for Breast Cancer" @default.
- W4306367123 cites W1483301906 @default.
- W4306367123 cites W1891489226 @default.
- W4306367123 cites W1956784352 @default.
- W4306367123 cites W1971606140 @default.
- W4306367123 cites W1978004240 @default.
- W4306367123 cites W1983024255 @default.
- W4306367123 cites W1985977793 @default.
- W4306367123 cites W1996507796 @default.
- W4306367123 cites W2003183020 @default.
- W4306367123 cites W2032676761 @default.
- W4306367123 cites W2036689171 @default.
- W4306367123 cites W2044702943 @default.
- W4306367123 cites W2075504794 @default.
- W4306367123 cites W2076210330 @default.
- W4306367123 cites W2096145980 @default.
- W4306367123 cites W2106578604 @default.
- W4306367123 cites W2116278801 @default.
- W4306367123 cites W2119549339 @default.
- W4306367123 cites W2127057139 @default.
- W4306367123 cites W2132893003 @default.
- W4306367123 cites W2143426320 @default.
- W4306367123 cites W2145247311 @default.
- W4306367123 cites W2147415463 @default.
- W4306367123 cites W2149886293 @default.
- W4306367123 cites W2150134401 @default.
- W4306367123 cites W2155487617 @default.
- W4306367123 cites W2234115940 @default.
- W4306367123 cites W2405233442 @default.
- W4306367123 cites W2508843977 @default.
- W4306367123 cites W2520894026 @default.
- W4306367123 cites W2555163006 @default.
- W4306367123 cites W2556821107 @default.
- W4306367123 cites W2604622211 @default.
- W4306367123 cites W2606062138 @default.
- W4306367123 cites W2606819954 @default.
- W4306367123 cites W2683805585 @default.
- W4306367123 cites W2725008604 @default.
- W4306367123 cites W2760995269 @default.
- W4306367123 cites W2771222571 @default.
- W4306367123 cites W2785615265 @default.
- W4306367123 cites W2789877281 @default.
- W4306367123 cites W2792778724 @default.
- W4306367123 cites W2792940777 @default.
- W4306367123 cites W2794826928 @default.
- W4306367123 cites W2801045744 @default.
- W4306367123 cites W2809293192 @default.
- W4306367123 cites W2856141131 @default.
- W4306367123 cites W2885311146 @default.
- W4306367123 cites W2889957507 @default.
- W4306367123 cites W2898574163 @default.
- W4306367123 cites W2906945456 @default.
- W4306367123 cites W2911137786 @default.
- W4306367123 cites W2936356193 @default.
- W4306367123 cites W2947683275 @default.
- W4306367123 cites W2957986133 @default.
- W4306367123 cites W2965191969 @default.
- W4306367123 cites W2971479523 @default.
- W4306367123 cites W2982064752 @default.
- W4306367123 cites W2999744434 @default.
- W4306367123 cites W3004010744 @default.
- W4306367123 cites W3004549570 @default.
- W4306367123 cites W3006658332 @default.
- W4306367123 cites W3009178297 @default.
- W4306367123 cites W3013155440 @default.
- W4306367123 cites W3027579353 @default.
- W4306367123 cites W3029973562 @default.
- W4306367123 cites W3038751622 @default.
- W4306367123 cites W3080728182 @default.
- W4306367123 cites W3088688933 @default.
- W4306367123 cites W3094570415 @default.
- W4306367123 cites W3112315590 @default.
- W4306367123 cites W3124135472 @default.