Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306377462> ?p ?o ?g. }
- W4306377462 endingPage "1692" @default.
- W4306377462 startingPage "1692" @default.
- W4306377462 abstract "In large-area forest inventories, a trade-off between the amount of data to be sampled and the corresponding collection costs is necessary. It is not always possible to have a very large data sample when dealing with sampling-based inventories. It is therefore important to optimize the sampling design with the limited resources. Whereas this sort of inventories are subject to these constraints, the availability of remote sensing (RS) data correlated with the forest inventory variables is usually much higher. For this reason, the RS and sampled field measurement data are often used in combination for improving the forest inventory estimation. In this study, we propose a model-based data sampling method founded on Bayesian optimization and machine learning algorithms which utilizes RS data to guide forest inventory sample selection. We evaluate our method in empirical experiments using real-world volume of growing stock data from the Aland region in Finland. The proposed method is compared against two baseline methods: simple random sampling and the local pivotal method. When a suitable model link is selected, the empirical experiments show on best case on average up to 22% and 79% improvement in population mean and variance estimation respectively over baselines. However, the results also illustrate the importance of model selection which has a clear effect on the results. The novelty of the study is in the application of Bayesian optimization in national forest inventory survey sampling." @default.
- W4306377462 created "2022-10-17" @default.
- W4306377462 creator A5058539829 @default.
- W4306377462 creator A5073217240 @default.
- W4306377462 creator A5080433150 @default.
- W4306377462 date "2022-10-14" @default.
- W4306377462 modified "2023-10-14" @default.
- W4306377462 title "Bayesian Approach for Optimizing Forest Inventory Survey Sampling with Remote Sensing Data" @default.
- W4306377462 cites W1485626427 @default.
- W4306377462 cites W1513990882 @default.
- W4306377462 cites W1567512734 @default.
- W4306377462 cites W168619835 @default.
- W4306377462 cites W1877183157 @default.
- W4306377462 cites W1905902179 @default.
- W4306377462 cites W1997732436 @default.
- W4306377462 cites W2006286982 @default.
- W4306377462 cites W2015940557 @default.
- W4306377462 cites W2019655708 @default.
- W4306377462 cites W2023005171 @default.
- W4306377462 cites W2033612074 @default.
- W4306377462 cites W2039036391 @default.
- W4306377462 cites W2044465660 @default.
- W4306377462 cites W2072334158 @default.
- W4306377462 cites W2074706991 @default.
- W4306377462 cites W2088538739 @default.
- W4306377462 cites W2100859322 @default.
- W4306377462 cites W2103549993 @default.
- W4306377462 cites W2115305054 @default.
- W4306377462 cites W2139929624 @default.
- W4306377462 cites W2162158218 @default.
- W4306377462 cites W2482464033 @default.
- W4306377462 cites W2486683043 @default.
- W4306377462 cites W2495953580 @default.
- W4306377462 cites W2524663546 @default.
- W4306377462 cites W2602191071 @default.
- W4306377462 cites W2616917210 @default.
- W4306377462 cites W2617356757 @default.
- W4306377462 cites W2772881636 @default.
- W4306377462 cites W2782548987 @default.
- W4306377462 cites W2798144068 @default.
- W4306377462 cites W2805802398 @default.
- W4306377462 cites W2911546748 @default.
- W4306377462 cites W2915861510 @default.
- W4306377462 cites W2932649578 @default.
- W4306377462 cites W2951513073 @default.
- W4306377462 cites W2952462031 @default.
- W4306377462 cites W2963600684 @default.
- W4306377462 cites W2966590113 @default.
- W4306377462 cites W3010148410 @default.
- W4306377462 cites W3088215358 @default.
- W4306377462 cites W3093778700 @default.
- W4306377462 cites W3113042715 @default.
- W4306377462 cites W3174898799 @default.
- W4306377462 cites W4200156896 @default.
- W4306377462 cites W4232575550 @default.
- W4306377462 cites W4234534407 @default.
- W4306377462 cites W4236261977 @default.
- W4306377462 cites W4249743219 @default.
- W4306377462 cites W4254280877 @default.
- W4306377462 cites W4293572566 @default.
- W4306377462 doi "https://doi.org/10.3390/f13101692" @default.
- W4306377462 hasPublicationYear "2022" @default.
- W4306377462 type Work @default.
- W4306377462 citedByCount "1" @default.
- W4306377462 countsByYear W43063774622023 @default.
- W4306377462 crossrefType "journal-article" @default.
- W4306377462 hasAuthorship W4306377462A5058539829 @default.
- W4306377462 hasAuthorship W4306377462A5073217240 @default.
- W4306377462 hasAuthorship W4306377462A5080433150 @default.
- W4306377462 hasBestOaLocation W43063774621 @default.
- W4306377462 hasConcept C105795698 @default.
- W4306377462 hasConcept C106131492 @default.
- W4306377462 hasConcept C119857082 @default.
- W4306377462 hasConcept C124101348 @default.
- W4306377462 hasConcept C140779682 @default.
- W4306377462 hasConcept C144024400 @default.
- W4306377462 hasConcept C147103442 @default.
- W4306377462 hasConcept C149923435 @default.
- W4306377462 hasConcept C169258074 @default.
- W4306377462 hasConcept C185592680 @default.
- W4306377462 hasConcept C198531522 @default.
- W4306377462 hasConcept C20353970 @default.
- W4306377462 hasConcept C205649164 @default.
- W4306377462 hasConcept C28631016 @default.
- W4306377462 hasConcept C2908647359 @default.
- W4306377462 hasConcept C31972630 @default.
- W4306377462 hasConcept C33923547 @default.
- W4306377462 hasConcept C41008148 @default.
- W4306377462 hasConcept C43617362 @default.
- W4306377462 hasConcept C75373757 @default.
- W4306377462 hasConcept C97137747 @default.
- W4306377462 hasConceptScore W4306377462C105795698 @default.
- W4306377462 hasConceptScore W4306377462C106131492 @default.
- W4306377462 hasConceptScore W4306377462C119857082 @default.
- W4306377462 hasConceptScore W4306377462C124101348 @default.
- W4306377462 hasConceptScore W4306377462C140779682 @default.
- W4306377462 hasConceptScore W4306377462C144024400 @default.
- W4306377462 hasConceptScore W4306377462C147103442 @default.