Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306385613> ?p ?o ?g. }
- W4306385613 endingPage "12272" @default.
- W4306385613 startingPage "12272" @default.
- W4306385613 abstract "Medical discoveries mainly depend on the capability to process and analyze biological datasets, which inundate the scientific community and are still expanding as the cost of next-generation sequencing technologies is decreasing. Deep learning (DL) is a viable method to exploit this massive data stream since it has advanced quickly with there being successive innovations. However, an obstacle to scientific progress emerges: the difficulty of applying DL to biology, and this because both fields are evolving at a breakneck pace, thus making it hard for an individual to occupy the front lines of both of them. This paper aims to bridge the gap and help computer scientists bring their valuable expertise into the life sciences. This work provides an overview of the most common types of biological data and data representations that are used to train DL models, with additional information on the models themselves and the various tasks that are being tackled. This is the essential information a DL expert with no background in biology needs in order to participate in DL-based research projects in biomedicine, biotechnology, and drug discovery. Alternatively, this study could be also useful to researchers in biology to understand and utilize the power of DL to gain better insights into and extract important information from the omics data." @default.
- W4306385613 created "2022-10-17" @default.
- W4306385613 creator A5032725664 @default.
- W4306385613 creator A5042467859 @default.
- W4306385613 creator A5056780007 @default.
- W4306385613 date "2022-10-14" @default.
- W4306385613 modified "2023-10-14" @default.
- W4306385613 title "Omics Data and Data Representations for Deep Learning-Based Predictive Modeling" @default.
- W4306385613 cites W1493357981 @default.
- W4306385613 cites W1494484168 @default.
- W4306385613 cites W1501531009 @default.
- W4306385613 cites W1577822803 @default.
- W4306385613 cites W1593309771 @default.
- W4306385613 cites W1967075220 @default.
- W4306385613 cites W1967195968 @default.
- W4306385613 cites W1969271108 @default.
- W4306385613 cites W1971363517 @default.
- W4306385613 cites W1987219048 @default.
- W4306385613 cites W1989277387 @default.
- W4306385613 cites W1996768014 @default.
- W4306385613 cites W2016060560 @default.
- W4306385613 cites W2019488416 @default.
- W4306385613 cites W2024767324 @default.
- W4306385613 cites W2028599082 @default.
- W4306385613 cites W2030952530 @default.
- W4306385613 cites W2058087601 @default.
- W4306385613 cites W2058539819 @default.
- W4306385613 cites W2065783627 @default.
- W4306385613 cites W2074414424 @default.
- W4306385613 cites W2116528446 @default.
- W4306385613 cites W2118526609 @default.
- W4306385613 cites W2119387367 @default.
- W4306385613 cites W2125040336 @default.
- W4306385613 cites W2140240158 @default.
- W4306385613 cites W2141090745 @default.
- W4306385613 cites W2142594886 @default.
- W4306385613 cites W2142742274 @default.
- W4306385613 cites W2148143831 @default.
- W4306385613 cites W2152705149 @default.
- W4306385613 cites W2158714788 @default.
- W4306385613 cites W2159877036 @default.
- W4306385613 cites W2236822143 @default.
- W4306385613 cites W2250539671 @default.
- W4306385613 cites W2346963783 @default.
- W4306385613 cites W2347153915 @default.
- W4306385613 cites W2396849069 @default.
- W4306385613 cites W2397757171 @default.
- W4306385613 cites W2502949459 @default.
- W4306385613 cites W2556070101 @default.
- W4306385613 cites W2616083932 @default.
- W4306385613 cites W2618530766 @default.
- W4306385613 cites W2730472814 @default.
- W4306385613 cites W2736280136 @default.
- W4306385613 cites W2767582147 @default.
- W4306385613 cites W2768455369 @default.
- W4306385613 cites W2769569970 @default.
- W4306385613 cites W2780155440 @default.
- W4306385613 cites W2781246871 @default.
- W4306385613 cites W2790203313 @default.
- W4306385613 cites W2792165586 @default.
- W4306385613 cites W2792690596 @default.
- W4306385613 cites W2796366395 @default.
- W4306385613 cites W2803325964 @default.
- W4306385613 cites W2803934991 @default.
- W4306385613 cites W2806834952 @default.
- W4306385613 cites W2887837536 @default.
- W4306385613 cites W2888484772 @default.
- W4306385613 cites W2889781208 @default.
- W4306385613 cites W2891164245 @default.
- W4306385613 cites W2891494568 @default.
- W4306385613 cites W2891838559 @default.
- W4306385613 cites W2893880892 @default.
- W4306385613 cites W2901218091 @default.
- W4306385613 cites W2904016702 @default.
- W4306385613 cites W2905701416 @default.
- W4306385613 cites W2919709896 @default.
- W4306385613 cites W2921144944 @default.
- W4306385613 cites W2923497684 @default.
- W4306385613 cites W2924377282 @default.
- W4306385613 cites W2925065992 @default.
- W4306385613 cites W2939354476 @default.
- W4306385613 cites W2942537220 @default.
- W4306385613 cites W2944360550 @default.
- W4306385613 cites W2948793799 @default.
- W4306385613 cites W2949237386 @default.
- W4306385613 cites W2950978907 @default.
- W4306385613 cites W2951209146 @default.
- W4306385613 cites W2951559571 @default.
- W4306385613 cites W2955152582 @default.
- W4306385613 cites W2962756421 @default.
- W4306385613 cites W2963347351 @default.
- W4306385613 cites W2963582649 @default.
- W4306385613 cites W2964880320 @default.
- W4306385613 cites W2969662046 @default.
- W4306385613 cites W2970852745 @default.
- W4306385613 cites W2973145183 @default.
- W4306385613 cites W2977338442 @default.
- W4306385613 cites W2979513593 @default.