Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306386044> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4306386044 abstract "Brain arteries are routinely imaged in the clinical setting by various modalities, e.g., time-of-flight magnetic resonance angiography (TOF-MRA). These imaging techniques have great potential for the diagnosis of cerebrovascular disease, disease progression, and response to treatment. Currently, however, only qualitative assessment is implemented in clinical applications, relying on visual inspection. While manual or semi-automated approaches for quantification exist, such solutions are impractical in the clinical setting as they are time-consuming, involve too many processing steps, and/or neglect image intensity information. In this study, we present a deep learning-based solution for the anatomical labeling of intracranial arteries that utilizes complete information from 3D TOF-MRA images. We adapted and trained a state-of-the-art multi-scale Unet architecture using imaging data of 242 patients with cerebrovascular disease to distinguish 24 arterial segments. The proposed model utilizes vessel-specific information as well as raw image intensity information, and can thus take tissue characteristics into account. Our method yielded a performance of 0.89 macro F1 and 0.90 balanced class accuracy (bAcc) in labeling aggregated segments and 0.80 macro F1 and 0.83 bAcc in labeling detailed arterial segments on average. In particular, a higher F1 score than 0.75 for most arteries of clinical interest for cerebrovascular disease was achieved, with higher than 0.90 F1 scores in the larger, main arteries. Due to minimal pre-processing, simple usability, and fast predictions, our method could be highly applicable in the clinical setting." @default.
- W4306386044 created "2022-10-17" @default.
- W4306386044 creator A5000965009 @default.
- W4306386044 creator A5023282625 @default.
- W4306386044 creator A5024004096 @default.
- W4306386044 creator A5034493341 @default.
- W4306386044 creator A5058612735 @default.
- W4306386044 creator A5059257321 @default.
- W4306386044 creator A5067129378 @default.
- W4306386044 creator A5074742815 @default.
- W4306386044 creator A5075542657 @default.
- W4306386044 creator A5079741790 @default.
- W4306386044 creator A5083903227 @default.
- W4306386044 creator A5087309123 @default.
- W4306386044 date "2022-10-17" @default.
- W4306386044 modified "2023-10-01" @default.
- W4306386044 title "Anatomical labeling of intracranial arteries with deep learning in patients with cerebrovascular disease" @default.
- W4306386044 cites W1544055130 @default.
- W4306386044 cites W1652398739 @default.
- W4306386044 cites W1933266403 @default.
- W4306386044 cites W1981689827 @default.
- W4306386044 cites W2022503038 @default.
- W4306386044 cites W2049418804 @default.
- W4306386044 cites W2050811051 @default.
- W4306386044 cites W2054522385 @default.
- W4306386044 cites W2069270259 @default.
- W4306386044 cites W2095912603 @default.
- W4306386044 cites W2147756293 @default.
- W4306386044 cites W2166533761 @default.
- W4306386044 cites W2261035264 @default.
- W4306386044 cites W2474106755 @default.
- W4306386044 cites W2533996428 @default.
- W4306386044 cites W2591760931 @default.
- W4306386044 cites W2772523953 @default.
- W4306386044 cites W2791117644 @default.
- W4306386044 cites W2903330639 @default.
- W4306386044 cites W2920218276 @default.
- W4306386044 cites W3035043849 @default.
- W4306386044 cites W3087774993 @default.
- W4306386044 cites W3159072128 @default.
- W4306386044 cites W3185662072 @default.
- W4306386044 cites W4281490029 @default.
- W4306386044 doi "https://doi.org/10.3389/fneur.2022.1000914" @default.
- W4306386044 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36341105" @default.
- W4306386044 hasPublicationYear "2022" @default.
- W4306386044 type Work @default.
- W4306386044 citedByCount "0" @default.
- W4306386044 crossrefType "journal-article" @default.
- W4306386044 hasAuthorship W4306386044A5000965009 @default.
- W4306386044 hasAuthorship W4306386044A5023282625 @default.
- W4306386044 hasAuthorship W4306386044A5024004096 @default.
- W4306386044 hasAuthorship W4306386044A5034493341 @default.
- W4306386044 hasAuthorship W4306386044A5058612735 @default.
- W4306386044 hasAuthorship W4306386044A5059257321 @default.
- W4306386044 hasAuthorship W4306386044A5067129378 @default.
- W4306386044 hasAuthorship W4306386044A5074742815 @default.
- W4306386044 hasAuthorship W4306386044A5075542657 @default.
- W4306386044 hasAuthorship W4306386044A5079741790 @default.
- W4306386044 hasAuthorship W4306386044A5083903227 @default.
- W4306386044 hasAuthorship W4306386044A5087309123 @default.
- W4306386044 hasBestOaLocation W43063860441 @default.
- W4306386044 hasConcept C107457646 @default.
- W4306386044 hasConcept C126838900 @default.
- W4306386044 hasConcept C143409427 @default.
- W4306386044 hasConcept C154945302 @default.
- W4306386044 hasConcept C170130773 @default.
- W4306386044 hasConcept C171614378 @default.
- W4306386044 hasConcept C3018723549 @default.
- W4306386044 hasConcept C41008148 @default.
- W4306386044 hasConcept C71924100 @default.
- W4306386044 hasConceptScore W4306386044C107457646 @default.
- W4306386044 hasConceptScore W4306386044C126838900 @default.
- W4306386044 hasConceptScore W4306386044C143409427 @default.
- W4306386044 hasConceptScore W4306386044C154945302 @default.
- W4306386044 hasConceptScore W4306386044C170130773 @default.
- W4306386044 hasConceptScore W4306386044C171614378 @default.
- W4306386044 hasConceptScore W4306386044C3018723549 @default.
- W4306386044 hasConceptScore W4306386044C41008148 @default.
- W4306386044 hasConceptScore W4306386044C71924100 @default.
- W4306386044 hasFunder F4320320300 @default.
- W4306386044 hasLocation W43063860441 @default.
- W4306386044 hasLocation W43063860442 @default.
- W4306386044 hasLocation W43063860443 @default.
- W4306386044 hasOpenAccess W4306386044 @default.
- W4306386044 hasPrimaryLocation W43063860441 @default.
- W4306386044 hasRelatedWork W1972093569 @default.
- W4306386044 hasRelatedWork W2049214470 @default.
- W4306386044 hasRelatedWork W2068541478 @default.
- W4306386044 hasRelatedWork W2073690763 @default.
- W4306386044 hasRelatedWork W2100369842 @default.
- W4306386044 hasRelatedWork W2133538145 @default.
- W4306386044 hasRelatedWork W2394484954 @default.
- W4306386044 hasRelatedWork W2416642399 @default.
- W4306386044 hasRelatedWork W2748952813 @default.
- W4306386044 hasRelatedWork W2899084033 @default.
- W4306386044 hasVolume "13" @default.
- W4306386044 isParatext "false" @default.
- W4306386044 isRetracted "false" @default.
- W4306386044 workType "article" @default.