Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306392406> ?p ?o ?g. }
- W4306392406 endingPage "3815" @default.
- W4306392406 startingPage "3815" @default.
- W4306392406 abstract "Consensus or conflict agreements, and how these change over time, have significant consequences for understanding the network behavior of human beings, especially when it is necessary to have agreements to move companies and countries forward peacefully. This paper proposes a new Greatest Common Decision Maker (GCDM) aggregation voting procedure applied to square preference matrices of n alternatives and n decision makers. An analysis of the mathematical combinatory ranking of consensus and conflicts generated by the GCDM is realized, and compared to the well-known Borda, Pluralism and Condorcet aggregation procedures to cover the entire class of dynamic accountable group decision-making phenomena. A classification for the family of magic squares is reviewed and it is determined that a conflict decision matrix corresponds to a Latin square. As an original contribution, a 2D color heatmap is generated as a visual tool to compare the consensus and conflict cases generated by the compared methods. Finally, a new consensus reaching model is proposed to compare these aggregation methods defining cost and effort change matrices to convert the cases of conflicts into consensus according to the change in individual preferences. The incorporation of social concepts into our research makes the results obtained stronger." @default.
- W4306392406 created "2022-10-17" @default.
- W4306392406 creator A5003688475 @default.
- W4306392406 creator A5065329018 @default.
- W4306392406 creator A5076710128 @default.
- W4306392406 date "2022-10-16" @default.
- W4306392406 modified "2023-09-30" @default.
- W4306392406 title "The Greatest Common Decision Maker: A Novel Conflict and Consensus Analysis Compared with Other Voting Procedures" @default.
- W4306392406 cites W1492518391 @default.
- W4306392406 cites W1612191182 @default.
- W4306392406 cites W1969696992 @default.
- W4306392406 cites W1981655991 @default.
- W4306392406 cites W2004084660 @default.
- W4306392406 cites W2006002090 @default.
- W4306392406 cites W2007784412 @default.
- W4306392406 cites W2035866973 @default.
- W4306392406 cites W2056965013 @default.
- W4306392406 cites W2071698610 @default.
- W4306392406 cites W2079184072 @default.
- W4306392406 cites W2079189411 @default.
- W4306392406 cites W2080201149 @default.
- W4306392406 cites W2091587857 @default.
- W4306392406 cites W2102219503 @default.
- W4306392406 cites W2110443042 @default.
- W4306392406 cites W2114660707 @default.
- W4306392406 cites W2140541004 @default.
- W4306392406 cites W2203751463 @default.
- W4306392406 cites W2216971780 @default.
- W4306392406 cites W2322205785 @default.
- W4306392406 cites W2519326991 @default.
- W4306392406 cites W2747538989 @default.
- W4306392406 cites W2752129480 @default.
- W4306392406 cites W2757222637 @default.
- W4306392406 cites W2794144384 @default.
- W4306392406 cites W2809439507 @default.
- W4306392406 cites W2883446280 @default.
- W4306392406 cites W2884100325 @default.
- W4306392406 cites W2893261532 @default.
- W4306392406 cites W2901158965 @default.
- W4306392406 cites W2901306906 @default.
- W4306392406 cites W2908570324 @default.
- W4306392406 cites W2952667233 @default.
- W4306392406 cites W3032966710 @default.
- W4306392406 cites W3086107884 @default.
- W4306392406 cites W3086674641 @default.
- W4306392406 cites W3102108116 @default.
- W4306392406 cites W3122379648 @default.
- W4306392406 cites W3160909257 @default.
- W4306392406 cites W3165851197 @default.
- W4306392406 cites W3169062656 @default.
- W4306392406 cites W3201429347 @default.
- W4306392406 cites W33233250 @default.
- W4306392406 cites W34310527 @default.
- W4306392406 cites W4200146675 @default.
- W4306392406 cites W4205262062 @default.
- W4306392406 cites W4205773545 @default.
- W4306392406 cites W4210926908 @default.
- W4306392406 cites W4282937947 @default.
- W4306392406 cites W4296120272 @default.
- W4306392406 doi "https://doi.org/10.3390/math10203815" @default.
- W4306392406 hasPublicationYear "2022" @default.
- W4306392406 type Work @default.
- W4306392406 citedByCount "0" @default.
- W4306392406 crossrefType "journal-article" @default.
- W4306392406 hasAuthorship W4306392406A5003688475 @default.
- W4306392406 hasAuthorship W4306392406A5065329018 @default.
- W4306392406 hasAuthorship W4306392406A5076710128 @default.
- W4306392406 hasBestOaLocation W43063924061 @default.
- W4306392406 hasConcept C140940377 @default.
- W4306392406 hasConcept C144237770 @default.
- W4306392406 hasConcept C153668964 @default.
- W4306392406 hasConcept C154945302 @default.
- W4306392406 hasConcept C15744967 @default.
- W4306392406 hasConcept C162324750 @default.
- W4306392406 hasConcept C17744445 @default.
- W4306392406 hasConcept C189352744 @default.
- W4306392406 hasConcept C189430467 @default.
- W4306392406 hasConcept C199539241 @default.
- W4306392406 hasConcept C20701700 @default.
- W4306392406 hasConcept C2986080485 @default.
- W4306392406 hasConcept C33923547 @default.
- W4306392406 hasConcept C41008148 @default.
- W4306392406 hasConcept C42475967 @default.
- W4306392406 hasConcept C520049643 @default.
- W4306392406 hasConcept C539667460 @default.
- W4306392406 hasConcept C77805123 @default.
- W4306392406 hasConcept C94625758 @default.
- W4306392406 hasConceptScore W4306392406C140940377 @default.
- W4306392406 hasConceptScore W4306392406C144237770 @default.
- W4306392406 hasConceptScore W4306392406C153668964 @default.
- W4306392406 hasConceptScore W4306392406C154945302 @default.
- W4306392406 hasConceptScore W4306392406C15744967 @default.
- W4306392406 hasConceptScore W4306392406C162324750 @default.
- W4306392406 hasConceptScore W4306392406C17744445 @default.
- W4306392406 hasConceptScore W4306392406C189352744 @default.
- W4306392406 hasConceptScore W4306392406C189430467 @default.
- W4306392406 hasConceptScore W4306392406C199539241 @default.
- W4306392406 hasConceptScore W4306392406C20701700 @default.