Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306392837> ?p ?o ?g. }
- W4306392837 abstract "Abstract Ionic liquids (IL) are a new class of liquids considered as green solvents; less toxic, less flammable, and less polluting which retain their liquid state over wide temperature ranges and are considered alternatives to volatile organic solvents. The surface tension of IL‐organic solvent mixtures plays an important role in the design and development of many industrial processes. This work investigated the capability and feasibility of four ANN model topologies (“trainbr, logsig”; “trainbr, tansig”; “trainlm, logsig”; “trainlm, tansig”), a PSO‐SVM model, and an LSSVM model to predict the surface tension of binary systems containing IL. For this purpose, 1623 data points corresponding to the experimental surface tension values of binary mixtures containing IL were collected from the literature. The surface tension values were between 18.9 and 72.7 mN m −1 . The temperature, the composition in mole fraction of IL (X IL ), descriptors based on the sigma profiles, relating to the H‐bond donor and to the H‐bond acceptor character, the anion, the cation and the solvent were used as input variables of the model in order to differentiate the different compounds involved in the binary systems. A comparison of the experimental and the predicted values in terms of several statistical metrics showed good agreement, however, the prediction (trainbr, logsig) was better than the other approaches with an overall average absolute relative deviation of .8466% and a mean square error of .4952. These results are very encouraging for future projects modeling other physical and chemical properties of ILs." @default.
- W4306392837 created "2022-10-17" @default.
- W4306392837 creator A5024343425 @default.
- W4306392837 creator A5046667880 @default.
- W4306392837 creator A5084175588 @default.
- W4306392837 date "2022-10-17" @default.
- W4306392837 modified "2023-10-17" @default.
- W4306392837 title "Machine learning approach for the prediction of surface tension of binary mixtures containing ionic liquids using σ‐profile descriptors" @default.
- W4306392837 cites W1965720531 @default.
- W4306392837 cites W1977293676 @default.
- W4306392837 cites W1980089755 @default.
- W4306392837 cites W1983305300 @default.
- W4306392837 cites W1989642763 @default.
- W4306392837 cites W1991292594 @default.
- W4306392837 cites W1997415372 @default.
- W4306392837 cites W1999109366 @default.
- W4306392837 cites W2012589271 @default.
- W4306392837 cites W2013516386 @default.
- W4306392837 cites W2014799235 @default.
- W4306392837 cites W2017641513 @default.
- W4306392837 cites W2023303327 @default.
- W4306392837 cites W2053860642 @default.
- W4306392837 cites W2059332919 @default.
- W4306392837 cites W2061262203 @default.
- W4306392837 cites W2064152011 @default.
- W4306392837 cites W2064180684 @default.
- W4306392837 cites W2074455772 @default.
- W4306392837 cites W2081211043 @default.
- W4306392837 cites W2083844448 @default.
- W4306392837 cites W2088874310 @default.
- W4306392837 cites W2094823406 @default.
- W4306392837 cites W2117918497 @default.
- W4306392837 cites W2132795750 @default.
- W4306392837 cites W2169053895 @default.
- W4306392837 cites W2183843206 @default.
- W4306392837 cites W2192572818 @default.
- W4306392837 cites W2327152472 @default.
- W4306392837 cites W2333336841 @default.
- W4306392837 cites W2335499439 @default.
- W4306392837 cites W2351747024 @default.
- W4306392837 cites W2512047647 @default.
- W4306392837 cites W2548293741 @default.
- W4306392837 cites W2553708505 @default.
- W4306392837 cites W2573471634 @default.
- W4306392837 cites W2598953509 @default.
- W4306392837 cites W2802673321 @default.
- W4306392837 cites W2807838313 @default.
- W4306392837 cites W2888176524 @default.
- W4306392837 cites W2911428682 @default.
- W4306392837 cites W2914424198 @default.
- W4306392837 cites W2954464033 @default.
- W4306392837 cites W2966708832 @default.
- W4306392837 cites W2982088085 @default.
- W4306392837 cites W3012560938 @default.
- W4306392837 cites W3016915661 @default.
- W4306392837 cites W3031598274 @default.
- W4306392837 cites W3037288284 @default.
- W4306392837 cites W3037426904 @default.
- W4306392837 cites W3038908664 @default.
- W4306392837 cites W3087651375 @default.
- W4306392837 cites W3119175735 @default.
- W4306392837 cites W3186113181 @default.
- W4306392837 doi "https://doi.org/10.1002/qua.27026" @default.
- W4306392837 hasPublicationYear "2022" @default.
- W4306392837 type Work @default.
- W4306392837 citedByCount "2" @default.
- W4306392837 countsByYear W43063928372023 @default.
- W4306392837 crossrefType "journal-article" @default.
- W4306392837 hasAuthorship W4306392837A5024343425 @default.
- W4306392837 hasAuthorship W4306392837A5046667880 @default.
- W4306392837 hasAuthorship W4306392837A5084175588 @default.
- W4306392837 hasConcept C105795698 @default.
- W4306392837 hasConcept C120934525 @default.
- W4306392837 hasConcept C121332964 @default.
- W4306392837 hasConcept C139945424 @default.
- W4306392837 hasConcept C145148216 @default.
- W4306392837 hasConcept C147789679 @default.
- W4306392837 hasConcept C154881586 @default.
- W4306392837 hasConcept C161790260 @default.
- W4306392837 hasConcept C178790620 @default.
- W4306392837 hasConcept C185592680 @default.
- W4306392837 hasConcept C186060115 @default.
- W4306392837 hasConcept C2182769 @default.
- W4306392837 hasConcept C2780471494 @default.
- W4306392837 hasConcept C33923547 @default.
- W4306392837 hasConcept C36591836 @default.
- W4306392837 hasConcept C48372109 @default.
- W4306392837 hasConcept C86803240 @default.
- W4306392837 hasConcept C8892853 @default.
- W4306392837 hasConcept C94375191 @default.
- W4306392837 hasConcept C97355855 @default.
- W4306392837 hasConceptScore W4306392837C105795698 @default.
- W4306392837 hasConceptScore W4306392837C120934525 @default.
- W4306392837 hasConceptScore W4306392837C121332964 @default.
- W4306392837 hasConceptScore W4306392837C139945424 @default.
- W4306392837 hasConceptScore W4306392837C145148216 @default.
- W4306392837 hasConceptScore W4306392837C147789679 @default.
- W4306392837 hasConceptScore W4306392837C154881586 @default.
- W4306392837 hasConceptScore W4306392837C161790260 @default.
- W4306392837 hasConceptScore W4306392837C178790620 @default.