Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306393208> ?p ?o ?g. }
- W4306393208 endingPage "128137" @default.
- W4306393208 startingPage "128137" @default.
- W4306393208 abstract "In this study, a novel methodology to determine plant biomass composition using artificial neural networks (ANN) is presented. This study was performed to determine the changes in the composition of fresh and 12 month-long stored biomass samples. The production of biofuels is a common method used to manage agricultural waste. However, owing to the seasonal characteristics of cultivation, storage is necessary in the production chain. The results indicated that cellulose and lignin were stable over time, with a maximum drop of 2.82 pp and 1.72 pp, respectively. Hemicellulose was determined to be less stable, with a drop of up to 9.19 pp after 12 months of storage. Regarding the kinetic parameters, the stored samples required a lower activation energy, but only for the active phase of pyrolysis. The accuracy of the proposed tool was extremely high, with a relative percentage difference as low as 12.9%." @default.
- W4306393208 created "2022-10-17" @default.
- W4306393208 creator A5000932843 @default.
- W4306393208 creator A5014746598 @default.
- W4306393208 creator A5025076232 @default.
- W4306393208 creator A5043263074 @default.
- W4306393208 creator A5078991396 @default.
- W4306393208 date "2022-11-01" @default.
- W4306393208 modified "2023-10-18" @default.
- W4306393208 title "Artificial neural networks to differentiate the composition and pyrolysis kinetics of fresh and long-stored maize" @default.
- W4306393208 cites W1687229698 @default.
- W4306393208 cites W1964596848 @default.
- W4306393208 cites W1981316754 @default.
- W4306393208 cites W1987135012 @default.
- W4306393208 cites W1992469412 @default.
- W4306393208 cites W2008575385 @default.
- W4306393208 cites W2027428593 @default.
- W4306393208 cites W2035188328 @default.
- W4306393208 cites W2065460153 @default.
- W4306393208 cites W2066890441 @default.
- W4306393208 cites W2067098339 @default.
- W4306393208 cites W2067878879 @default.
- W4306393208 cites W2071313595 @default.
- W4306393208 cites W2085232207 @default.
- W4306393208 cites W2109337085 @default.
- W4306393208 cites W2128441580 @default.
- W4306393208 cites W2164776859 @default.
- W4306393208 cites W2316433328 @default.
- W4306393208 cites W2336998050 @default.
- W4306393208 cites W2552588572 @default.
- W4306393208 cites W2562312418 @default.
- W4306393208 cites W2594434222 @default.
- W4306393208 cites W2763682599 @default.
- W4306393208 cites W2769525181 @default.
- W4306393208 cites W2771617838 @default.
- W4306393208 cites W2793052973 @default.
- W4306393208 cites W2889811802 @default.
- W4306393208 cites W2901700372 @default.
- W4306393208 cites W2914658725 @default.
- W4306393208 cites W2917826933 @default.
- W4306393208 cites W2944373412 @default.
- W4306393208 cites W2994776572 @default.
- W4306393208 cites W3002413927 @default.
- W4306393208 cites W3004350943 @default.
- W4306393208 cites W3079513367 @default.
- W4306393208 cites W3080833379 @default.
- W4306393208 cites W3096744954 @default.
- W4306393208 cites W3107962750 @default.
- W4306393208 cites W3125621284 @default.
- W4306393208 cites W3127313977 @default.
- W4306393208 cites W3127401411 @default.
- W4306393208 cites W3135807826 @default.
- W4306393208 cites W3162387139 @default.
- W4306393208 cites W3209530605 @default.
- W4306393208 cites W4207067325 @default.
- W4306393208 cites W4224435126 @default.
- W4306393208 cites W4281708496 @default.
- W4306393208 cites W4289079919 @default.
- W4306393208 doi "https://doi.org/10.1016/j.biortech.2022.128137" @default.
- W4306393208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36257520" @default.
- W4306393208 hasPublicationYear "2022" @default.
- W4306393208 type Work @default.
- W4306393208 citedByCount "1" @default.
- W4306393208 countsByYear W43063932082023 @default.
- W4306393208 crossrefType "journal-article" @default.
- W4306393208 hasAuthorship W4306393208A5000932843 @default.
- W4306393208 hasAuthorship W4306393208A5014746598 @default.
- W4306393208 hasAuthorship W4306393208A5025076232 @default.
- W4306393208 hasAuthorship W4306393208A5043263074 @default.
- W4306393208 hasAuthorship W4306393208A5078991396 @default.
- W4306393208 hasBestOaLocation W43063932081 @default.
- W4306393208 hasConcept C115540264 @default.
- W4306393208 hasConcept C127413603 @default.
- W4306393208 hasConcept C138885662 @default.
- W4306393208 hasConcept C156380964 @default.
- W4306393208 hasConcept C178790620 @default.
- W4306393208 hasConcept C185592680 @default.
- W4306393208 hasConcept C2776073808 @default.
- W4306393208 hasConcept C2779251873 @default.
- W4306393208 hasConcept C2781052789 @default.
- W4306393208 hasConcept C2781345722 @default.
- W4306393208 hasConcept C36759035 @default.
- W4306393208 hasConcept C39432304 @default.
- W4306393208 hasConcept C40231798 @default.
- W4306393208 hasConcept C41008148 @default.
- W4306393208 hasConcept C41895202 @default.
- W4306393208 hasConcept C528095902 @default.
- W4306393208 hasConcept C53991642 @default.
- W4306393208 hasConcept C548081761 @default.
- W4306393208 hasConcept C55493867 @default.
- W4306393208 hasConcept C6557445 @default.
- W4306393208 hasConcept C76155785 @default.
- W4306393208 hasConcept C86803240 @default.
- W4306393208 hasConceptScore W4306393208C115540264 @default.
- W4306393208 hasConceptScore W4306393208C127413603 @default.
- W4306393208 hasConceptScore W4306393208C138885662 @default.
- W4306393208 hasConceptScore W4306393208C156380964 @default.
- W4306393208 hasConceptScore W4306393208C178790620 @default.