Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306403170> ?p ?o ?g. }
- W4306403170 endingPage "5181" @default.
- W4306403170 startingPage "5181" @default.
- W4306403170 abstract "The proliferation of massive polarimetric Synthetic Aperture Radar (SAR) data helps promote the development of SAR image interpretation. Due to the advantages of powerful feature extraction capability and strong adaptability for different tasks, deep learning has been adopted in the work of SAR image interpretation and has achieved good results. However, most deep learning methods only employ single-polarization SAR images and ignore the water features embedded in multi-polarization SAR images. To fully exploit the dual-polarization SAR data and multi-scale features of SAR images, an effective flood detection method for SAR images is proposed in this paper. In the proposed flood detection method, a powerful Multi-Scale Deeplab (MS-Deeplab) model is constructed based on the dual-channel MobileNetV2 backbone and the classic DeeplabV3+ architecture to improve the ability of water feature extraction in SAR images. Firstly, the dual-channel feature extraction backbone based on the lightweight MobileNetV2 separately trains the dual-polarization SAR images, and the obtained training parameters are merged with the linear weighting to fuse dual-polarization water features. Given the multi-scale space information in SAR images, then, a multi-scale feature fusion module is introduced to effectively utilize multi-layer features and contextual information, which enhances the representation of water features. Finally, a joint loss function is constructed based on cross-entropy and a dice coefficient to deal with the imbalanced categorical distribution in the training dataset. The experimental results on the time series of Sentinel-1A SAR images show that the proposed method for flood detection has a strong ability to locate water boundaries and tiny water bodies in complex scenes. In terms of quantitative assessment, MS-Deeplab can achieve a better performance compared with other mainstream semantic segmentation models, including PSPNet, Unet and the original DeeplabV3+ model, with a 3.27% intersection over union (IoU) and 1.69% pixel accuracy (PA) improvement than the original DeeplabV3+ model." @default.
- W4306403170 created "2022-10-17" @default.
- W4306403170 creator A5012515711 @default.
- W4306403170 creator A5017164730 @default.
- W4306403170 creator A5036949136 @default.
- W4306403170 creator A5038920560 @default.
- W4306403170 creator A5046502962 @default.
- W4306403170 creator A5047954274 @default.
- W4306403170 creator A5048135942 @default.
- W4306403170 creator A5059732014 @default.
- W4306403170 creator A5073106969 @default.
- W4306403170 date "2022-10-17" @default.
- W4306403170 modified "2023-10-15" @default.
- W4306403170 title "Flood Detection in Dual-Polarization SAR Images Based on Multi-Scale Deeplab Model" @default.
- W4306403170 cites W2004376198 @default.
- W4306403170 cites W2039502089 @default.
- W4306403170 cites W2159432279 @default.
- W4306403170 cites W2340292449 @default.
- W4306403170 cites W2531340046 @default.
- W4306403170 cites W2563705555 @default.
- W4306403170 cites W2565639579 @default.
- W4306403170 cites W2779850592 @default.
- W4306403170 cites W2807465918 @default.
- W4306403170 cites W2904122576 @default.
- W4306403170 cites W2914237936 @default.
- W4306403170 cites W2970277117 @default.
- W4306403170 cites W2981719849 @default.
- W4306403170 cites W2983573838 @default.
- W4306403170 cites W2995256253 @default.
- W4306403170 cites W3036035228 @default.
- W4306403170 cites W3038494602 @default.
- W4306403170 cites W3119312984 @default.
- W4306403170 cites W3134296290 @default.
- W4306403170 cites W3141281048 @default.
- W4306403170 cites W3151208719 @default.
- W4306403170 cites W3176330035 @default.
- W4306403170 cites W3198651093 @default.
- W4306403170 cites W3205233525 @default.
- W4306403170 cites W3206475182 @default.
- W4306403170 cites W3212226909 @default.
- W4306403170 cites W3217647618 @default.
- W4306403170 cites W4214893857 @default.
- W4306403170 doi "https://doi.org/10.3390/rs14205181" @default.
- W4306403170 hasPublicationYear "2022" @default.
- W4306403170 type Work @default.
- W4306403170 citedByCount "7" @default.
- W4306403170 countsByYear W43064031702022 @default.
- W4306403170 countsByYear W43064031702023 @default.
- W4306403170 crossrefType "journal-article" @default.
- W4306403170 hasAuthorship W4306403170A5012515711 @default.
- W4306403170 hasAuthorship W4306403170A5017164730 @default.
- W4306403170 hasAuthorship W4306403170A5036949136 @default.
- W4306403170 hasAuthorship W4306403170A5038920560 @default.
- W4306403170 hasAuthorship W4306403170A5046502962 @default.
- W4306403170 hasAuthorship W4306403170A5047954274 @default.
- W4306403170 hasAuthorship W4306403170A5048135942 @default.
- W4306403170 hasAuthorship W4306403170A5059732014 @default.
- W4306403170 hasAuthorship W4306403170A5073106969 @default.
- W4306403170 hasBestOaLocation W43064031701 @default.
- W4306403170 hasConcept C10929652 @default.
- W4306403170 hasConcept C124101348 @default.
- W4306403170 hasConcept C126838900 @default.
- W4306403170 hasConcept C127313418 @default.
- W4306403170 hasConcept C153180895 @default.
- W4306403170 hasConcept C154945302 @default.
- W4306403170 hasConcept C183115368 @default.
- W4306403170 hasConcept C31972630 @default.
- W4306403170 hasConcept C41008148 @default.
- W4306403170 hasConcept C52622490 @default.
- W4306403170 hasConcept C554190296 @default.
- W4306403170 hasConcept C62649853 @default.
- W4306403170 hasConcept C71924100 @default.
- W4306403170 hasConcept C76155785 @default.
- W4306403170 hasConcept C87360688 @default.
- W4306403170 hasConceptScore W4306403170C10929652 @default.
- W4306403170 hasConceptScore W4306403170C124101348 @default.
- W4306403170 hasConceptScore W4306403170C126838900 @default.
- W4306403170 hasConceptScore W4306403170C127313418 @default.
- W4306403170 hasConceptScore W4306403170C153180895 @default.
- W4306403170 hasConceptScore W4306403170C154945302 @default.
- W4306403170 hasConceptScore W4306403170C183115368 @default.
- W4306403170 hasConceptScore W4306403170C31972630 @default.
- W4306403170 hasConceptScore W4306403170C41008148 @default.
- W4306403170 hasConceptScore W4306403170C52622490 @default.
- W4306403170 hasConceptScore W4306403170C554190296 @default.
- W4306403170 hasConceptScore W4306403170C62649853 @default.
- W4306403170 hasConceptScore W4306403170C71924100 @default.
- W4306403170 hasConceptScore W4306403170C76155785 @default.
- W4306403170 hasConceptScore W4306403170C87360688 @default.
- W4306403170 hasFunder F4320321001 @default.
- W4306403170 hasIssue "20" @default.
- W4306403170 hasLocation W43064031701 @default.
- W4306403170 hasLocation W43064031702 @default.
- W4306403170 hasOpenAccess W4306403170 @default.
- W4306403170 hasPrimaryLocation W43064031701 @default.
- W4306403170 hasRelatedWork W1964120219 @default.
- W4306403170 hasRelatedWork W2000165426 @default.
- W4306403170 hasRelatedWork W2114557664 @default.