Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306404369> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4306404369 endingPage "533" @default.
- W4306404369 startingPage "533" @default.
- W4306404369 abstract "Two different Hamiltonian formulations of the metric gravity are discussed and applied to describe a free gravitational field in the d dimensional Riemann space-time. Theory of canonical transformations, which relates equivalent Hamiltonian formulations of the metric gravity, is investigated in detail. In particular, we have formulated the conditions of canonicity for transformation between the two sets of dynamical variables used in our Hamiltonian formulations of the metric gravity. Such conditions include the ordinary condition of canonicity known in classical Hamilton mechanics, i.e., the exact coincidence of the Poisson (or Laplace) brackets which are determined for both the new and old dynamical Hamiltonian variables. However, in addition to this, any true canonical transformations defined in the metric gravity, which is a constrained dynamical system, must also guarantee the exact conservation of the total Hamiltonians Ht (in both formulations) and preservation of the algebra of first-class constraints. We show that Dirac’s modifications of the classical Hamilton method contain a number of crucial advantages, which provide an obvious superiority of this method in order to develop various non-contradictory Hamiltonian theories of many physical fields, when a number of gauge conditions are also important. Theory of integral invariants and its applications to the Hamiltonian metric gravity are also discussed. For Hamiltonian dynamical systems with first-class constraints this theory leads to a number of peculiarities some of which have been investigated." @default.
- W4306404369 created "2022-10-17" @default.
- W4306404369 creator A5018329417 @default.
- W4306404369 date "2022-10-14" @default.
- W4306404369 modified "2023-09-26" @default.
- W4306404369 title "Metric Gravity in the Hamiltonian Form—Canonical Transformations—Dirac’s Modifications of the Hamilton Method and Integral Invariants of the Metric Gravity" @default.
- W4306404369 cites W1964214158 @default.
- W4306404369 cites W1978652497 @default.
- W4306404369 cites W1985307294 @default.
- W4306404369 cites W1987278096 @default.
- W4306404369 cites W1988974971 @default.
- W4306404369 cites W1989934194 @default.
- W4306404369 cites W1990574014 @default.
- W4306404369 cites W1997406347 @default.
- W4306404369 cites W2012667025 @default.
- W4306404369 cites W2031569358 @default.
- W4306404369 cites W2090885291 @default.
- W4306404369 cites W3215778028 @default.
- W4306404369 cites W4206588626 @default.
- W4306404369 doi "https://doi.org/10.3390/universe8100533" @default.
- W4306404369 hasPublicationYear "2022" @default.
- W4306404369 type Work @default.
- W4306404369 citedByCount "1" @default.
- W4306404369 countsByYear W43064043692023 @default.
- W4306404369 crossrefType "journal-article" @default.
- W4306404369 hasAuthorship W4306404369A5018329417 @default.
- W4306404369 hasBestOaLocation W43064043691 @default.
- W4306404369 hasConcept C108568745 @default.
- W4306404369 hasConcept C109798219 @default.
- W4306404369 hasConcept C121332964 @default.
- W4306404369 hasConcept C121770821 @default.
- W4306404369 hasConcept C126255220 @default.
- W4306404369 hasConcept C130787639 @default.
- W4306404369 hasConcept C136864674 @default.
- W4306404369 hasConcept C151342819 @default.
- W4306404369 hasConcept C161520196 @default.
- W4306404369 hasConcept C179578378 @default.
- W4306404369 hasConcept C2778267785 @default.
- W4306404369 hasConcept C3379466 @default.
- W4306404369 hasConcept C33923547 @default.
- W4306404369 hasConcept C37914503 @default.
- W4306404369 hasConcept C58801389 @default.
- W4306404369 hasConcept C62520636 @default.
- W4306404369 hasConcept C74650414 @default.
- W4306404369 hasConcept C84114770 @default.
- W4306404369 hasConceptScore W4306404369C108568745 @default.
- W4306404369 hasConceptScore W4306404369C109798219 @default.
- W4306404369 hasConceptScore W4306404369C121332964 @default.
- W4306404369 hasConceptScore W4306404369C121770821 @default.
- W4306404369 hasConceptScore W4306404369C126255220 @default.
- W4306404369 hasConceptScore W4306404369C130787639 @default.
- W4306404369 hasConceptScore W4306404369C136864674 @default.
- W4306404369 hasConceptScore W4306404369C151342819 @default.
- W4306404369 hasConceptScore W4306404369C161520196 @default.
- W4306404369 hasConceptScore W4306404369C179578378 @default.
- W4306404369 hasConceptScore W4306404369C2778267785 @default.
- W4306404369 hasConceptScore W4306404369C3379466 @default.
- W4306404369 hasConceptScore W4306404369C33923547 @default.
- W4306404369 hasConceptScore W4306404369C37914503 @default.
- W4306404369 hasConceptScore W4306404369C58801389 @default.
- W4306404369 hasConceptScore W4306404369C62520636 @default.
- W4306404369 hasConceptScore W4306404369C74650414 @default.
- W4306404369 hasConceptScore W4306404369C84114770 @default.
- W4306404369 hasIssue "10" @default.
- W4306404369 hasLocation W43064043691 @default.
- W4306404369 hasLocation W43064043692 @default.
- W4306404369 hasOpenAccess W4306404369 @default.
- W4306404369 hasPrimaryLocation W43064043691 @default.
- W4306404369 hasRelatedWork W1985795374 @default.
- W4306404369 hasRelatedWork W1985812649 @default.
- W4306404369 hasRelatedWork W2006323999 @default.
- W4306404369 hasRelatedWork W2083754940 @default.
- W4306404369 hasRelatedWork W2168934543 @default.
- W4306404369 hasRelatedWork W2950025810 @default.
- W4306404369 hasRelatedWork W3208853252 @default.
- W4306404369 hasRelatedWork W3215778028 @default.
- W4306404369 hasRelatedWork W4225516673 @default.
- W4306404369 hasRelatedWork W4294319180 @default.
- W4306404369 hasVolume "8" @default.
- W4306404369 isParatext "false" @default.
- W4306404369 isRetracted "false" @default.
- W4306404369 workType "article" @default.