Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306405846> ?p ?o ?g. }
- W4306405846 endingPage "474" @default.
- W4306405846 startingPage "449" @default.
- W4306405846 abstract "The feature selection process plays an important role in different fields, particularly in bioinformatics and microarray gene expression data analysis, for choosing discriminative genes from high-dimensional datasets and selecting a subset of highly relevant features with low redundancy that may lead to build improved prediction models. Consequently, this study proposes a new feature selection method that integrates Preordonnances theory in terms of new Relevance and Complementarity criteria introduced here and also connectivity in undirected Weighted Graphs (PCRWG). The method can handle high-dimensional data. PCRWG retains the relevant and complementary features to select effective features in large scale gene datasets. The proposed algorithm operates in two phases: filtering and wrapping. The strength of the first phase is that it is preceded by a step that further reduces the number of predictors by removing those in disagreement with the target based on the new proposed relevance criterion. Then, the proposed heuristic uses the relevance-complementarity ratio between preordonnances to automatically update the compromise rule between relevance and complementarity. In the wrapping phase, the suggested graph-based approach using maximal clique is based on a powerful relevance-complementarity matrix to consolidate edges, two connected interdependent features are complementary to each other, and it is possible to have high discriminative power when they serve as a group. We highlight the fact that existing graph-based feature selection algorithms do not consider relevance and complementarity simultaneously. The experiments were carried out on three simulated scenarios and the thirteen most popular cancer microarray gene datasets. Formally, they are eight binary and five multi-class microarray data. A 10-fold cross validation was used to evaluate the Support Vector Machine (SVM), Naive Bayes (NB) and artificial Neural Network (NN) classifiers. The empirical results demonstrate the high performance of the proposed hybrid approach when compared to the most recently published articles." @default.
- W4306405846 created "2022-10-17" @default.
- W4306405846 creator A5014144807 @default.
- W4306405846 creator A5040678186 @default.
- W4306405846 creator A5088069359 @default.
- W4306405846 date "2022-11-01" @default.
- W4306405846 modified "2023-10-16" @default.
- W4306405846 title "A hybrid feature selection approach for Microarray datasets using graph theoretic-based method" @default.
- W4306405846 cites W1970696760 @default.
- W4306405846 cites W1979279626 @default.
- W4306405846 cites W2003753594 @default.
- W4306405846 cites W2019683663 @default.
- W4306405846 cites W2078093994 @default.
- W4306405846 cites W2087684630 @default.
- W4306405846 cites W2088851040 @default.
- W4306405846 cites W2109363337 @default.
- W4306405846 cites W2128985829 @default.
- W4306405846 cites W2134389439 @default.
- W4306405846 cites W2149772057 @default.
- W4306405846 cites W2154053567 @default.
- W4306405846 cites W2159400887 @default.
- W4306405846 cites W2307705085 @default.
- W4306405846 cites W2560046788 @default.
- W4306405846 cites W2733529991 @default.
- W4306405846 cites W2782356391 @default.
- W4306405846 cites W2889973475 @default.
- W4306405846 cites W2894794704 @default.
- W4306405846 cites W2901312974 @default.
- W4306405846 cites W2911876654 @default.
- W4306405846 cites W2912721080 @default.
- W4306405846 cites W2954444967 @default.
- W4306405846 cites W2973687873 @default.
- W4306405846 cites W3000870501 @default.
- W4306405846 cites W3006159410 @default.
- W4306405846 cites W3007979943 @default.
- W4306405846 cites W3026126388 @default.
- W4306405846 cites W3028308428 @default.
- W4306405846 cites W3092029138 @default.
- W4306405846 cites W3125144398 @default.
- W4306405846 cites W3132891126 @default.
- W4306405846 cites W3133614530 @default.
- W4306405846 cites W3172866017 @default.
- W4306405846 cites W3186106104 @default.
- W4306405846 cites W3196227100 @default.
- W4306405846 cites W3198071122 @default.
- W4306405846 cites W4229073069 @default.
- W4306405846 cites W4246697467 @default.
- W4306405846 cites W4253515094 @default.
- W4306405846 cites W4282823491 @default.
- W4306405846 cites W4293575929 @default.
- W4306405846 doi "https://doi.org/10.1016/j.ins.2022.10.001" @default.
- W4306405846 hasPublicationYear "2022" @default.
- W4306405846 type Work @default.
- W4306405846 citedByCount "7" @default.
- W4306405846 countsByYear W43064058462023 @default.
- W4306405846 crossrefType "journal-article" @default.
- W4306405846 hasAuthorship W4306405846A5014144807 @default.
- W4306405846 hasAuthorship W4306405846A5040678186 @default.
- W4306405846 hasAuthorship W4306405846A5088069359 @default.
- W4306405846 hasConcept C11413529 @default.
- W4306405846 hasConcept C124101348 @default.
- W4306405846 hasConcept C132525143 @default.
- W4306405846 hasConcept C148483581 @default.
- W4306405846 hasConcept C153180895 @default.
- W4306405846 hasConcept C154945302 @default.
- W4306405846 hasConcept C158154518 @default.
- W4306405846 hasConcept C17744445 @default.
- W4306405846 hasConcept C199539241 @default.
- W4306405846 hasConcept C41008148 @default.
- W4306405846 hasConcept C80444323 @default.
- W4306405846 hasConcept C97931131 @default.
- W4306405846 hasConceptScore W4306405846C11413529 @default.
- W4306405846 hasConceptScore W4306405846C124101348 @default.
- W4306405846 hasConceptScore W4306405846C132525143 @default.
- W4306405846 hasConceptScore W4306405846C148483581 @default.
- W4306405846 hasConceptScore W4306405846C153180895 @default.
- W4306405846 hasConceptScore W4306405846C154945302 @default.
- W4306405846 hasConceptScore W4306405846C158154518 @default.
- W4306405846 hasConceptScore W4306405846C17744445 @default.
- W4306405846 hasConceptScore W4306405846C199539241 @default.
- W4306405846 hasConceptScore W4306405846C41008148 @default.
- W4306405846 hasConceptScore W4306405846C80444323 @default.
- W4306405846 hasConceptScore W4306405846C97931131 @default.
- W4306405846 hasLocation W43064058461 @default.
- W4306405846 hasOpenAccess W4306405846 @default.
- W4306405846 hasPrimaryLocation W43064058461 @default.
- W4306405846 hasRelatedWork W1972656095 @default.
- W4306405846 hasRelatedWork W2024160000 @default.
- W4306405846 hasRelatedWork W2061273563 @default.
- W4306405846 hasRelatedWork W2285052147 @default.
- W4306405846 hasRelatedWork W2729514902 @default.
- W4306405846 hasRelatedWork W2743258233 @default.
- W4306405846 hasRelatedWork W2773500201 @default.
- W4306405846 hasRelatedWork W2970216048 @default.
- W4306405846 hasRelatedWork W2998168123 @default.
- W4306405846 hasRelatedWork W4287995534 @default.
- W4306405846 hasVolume "615" @default.
- W4306405846 isParatext "false" @default.