Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306405905> ?p ?o ?g. }
- W4306405905 endingPage "101464" @default.
- W4306405905 startingPage "101464" @default.
- W4306405905 abstract "We hypothesized that an interpretable gradient boosting machine (GBM) model considering comorbidities, P-wave and echocardiographic measurements, can better predict mortality and cerebrovascular events in mitral regurgitation (MR). Patients from a tertiary center were analyzed. The GBM model was used as an interpretable statistical approach to identify the leading indicators of high-risk patients with either outcome of CVAs and all-cause mortality. A total of 706 patients were included. GBM analysis showed that age, systolic blood pressure, diastolic blood pressure, plasma albumin levels, mean P-wave duration (PWD), MR regurgitant volume, left ventricular ejection fraction (LVEF), left atrial dimension at end-systole (LADs), velocity-time integral (VTI) and effective regurgitant orifice were significant predictors of TIA/stroke. Age, sodium, urea and albumin levels, platelet count, mean PWD, LVEF, LADs, left ventricular dimension at end systole (LVDs) and VTI were significant predictors of all-cause mortality. The GBM demonstrates the best predictive performance in terms of precision, sensitivity c-statistic and F1-score compared to logistic regression, decision tree, random forest, support vector machine, and artificial neural networks. Gradient boosting model incorporating clinical data from different investigative modalities significantly improves risk prediction performance and identify key indicators for outcome prediction in MR." @default.
- W4306405905 created "2022-10-17" @default.
- W4306405905 creator A5018141723 @default.
- W4306405905 creator A5019246193 @default.
- W4306405905 creator A5024068455 @default.
- W4306405905 creator A5043075532 @default.
- W4306405905 creator A5046775442 @default.
- W4306405905 creator A5052391290 @default.
- W4306405905 creator A5065717792 @default.
- W4306405905 creator A5068566752 @default.
- W4306405905 creator A5072942068 @default.
- W4306405905 creator A5074565083 @default.
- W4306405905 creator A5083848380 @default.
- W4306405905 date "2023-02-01" @default.
- W4306405905 modified "2023-09-26" @default.
- W4306405905 title "Predicting Stroke and Mortality in Mitral Regurgitation: A Machine Learning Approach" @default.
- W4306405905 cites W1567459603 @default.
- W4306405905 cites W1678356000 @default.
- W4306405905 cites W1965867729 @default.
- W4306405905 cites W1975582925 @default.
- W4306405905 cites W1988620868 @default.
- W4306405905 cites W1996255825 @default.
- W4306405905 cites W2013009184 @default.
- W4306405905 cites W2016511593 @default.
- W4306405905 cites W2018773609 @default.
- W4306405905 cites W2038254709 @default.
- W4306405905 cites W2050271802 @default.
- W4306405905 cites W2082392154 @default.
- W4306405905 cites W2086220442 @default.
- W4306405905 cites W2088794999 @default.
- W4306405905 cites W2102642040 @default.
- W4306405905 cites W2108044541 @default.
- W4306405905 cites W2122694177 @default.
- W4306405905 cites W2156423726 @default.
- W4306405905 cites W2323255267 @default.
- W4306405905 cites W2470498562 @default.
- W4306405905 cites W2514402124 @default.
- W4306405905 cites W2549885908 @default.
- W4306405905 cites W2567881713 @default.
- W4306405905 cites W2605253636 @default.
- W4306405905 cites W2732967580 @default.
- W4306405905 cites W2781702232 @default.
- W4306405905 cites W2789349441 @default.
- W4306405905 cites W2792369674 @default.
- W4306405905 cites W2797120312 @default.
- W4306405905 cites W2799333853 @default.
- W4306405905 cites W2808790244 @default.
- W4306405905 cites W2911964244 @default.
- W4306405905 cites W2913508292 @default.
- W4306405905 cites W2922181508 @default.
- W4306405905 cites W2970198438 @default.
- W4306405905 cites W2970779614 @default.
- W4306405905 cites W2972732442 @default.
- W4306405905 cites W2980238977 @default.
- W4306405905 cites W2998636556 @default.
- W4306405905 cites W3003712552 @default.
- W4306405905 cites W3010800101 @default.
- W4306405905 cites W3025324591 @default.
- W4306405905 cites W3034348006 @default.
- W4306405905 cites W4211222990 @default.
- W4306405905 cites W90028177 @default.
- W4306405905 cites W2083341791 @default.
- W4306405905 doi "https://doi.org/10.1016/j.cpcardiol.2022.101464" @default.
- W4306405905 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36261105" @default.
- W4306405905 hasPublicationYear "2023" @default.
- W4306405905 type Work @default.
- W4306405905 citedByCount "1" @default.
- W4306405905 countsByYear W43064059052023 @default.
- W4306405905 crossrefType "journal-article" @default.
- W4306405905 hasAuthorship W4306405905A5018141723 @default.
- W4306405905 hasAuthorship W4306405905A5019246193 @default.
- W4306405905 hasAuthorship W4306405905A5024068455 @default.
- W4306405905 hasAuthorship W4306405905A5043075532 @default.
- W4306405905 hasAuthorship W4306405905A5046775442 @default.
- W4306405905 hasAuthorship W4306405905A5052391290 @default.
- W4306405905 hasAuthorship W4306405905A5065717792 @default.
- W4306405905 hasAuthorship W4306405905A5068566752 @default.
- W4306405905 hasAuthorship W4306405905A5072942068 @default.
- W4306405905 hasAuthorship W4306405905A5074565083 @default.
- W4306405905 hasAuthorship W4306405905A5083848380 @default.
- W4306405905 hasBestOaLocation W43064059051 @default.
- W4306405905 hasConcept C119857082 @default.
- W4306405905 hasConcept C126322002 @default.
- W4306405905 hasConcept C151956035 @default.
- W4306405905 hasConcept C164705383 @default.
- W4306405905 hasConcept C169258074 @default.
- W4306405905 hasConcept C2778198053 @default.
- W4306405905 hasConcept C2993373945 @default.
- W4306405905 hasConcept C41008148 @default.
- W4306405905 hasConcept C70153297 @default.
- W4306405905 hasConcept C71924100 @default.
- W4306405905 hasConcept C78085059 @default.
- W4306405905 hasConcept C80461066 @default.
- W4306405905 hasConceptScore W4306405905C119857082 @default.
- W4306405905 hasConceptScore W4306405905C126322002 @default.
- W4306405905 hasConceptScore W4306405905C151956035 @default.
- W4306405905 hasConceptScore W4306405905C164705383 @default.
- W4306405905 hasConceptScore W4306405905C169258074 @default.