Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306406917> ?p ?o ?g. }
- W4306406917 endingPage "103" @default.
- W4306406917 startingPage "83" @default.
- W4306406917 abstract "We study a class of adversarial minimum-cost flow problems where the arcs are subject to multiple ripple effect disruptions that increase their usage cost. The locations of the disruptions’ epicenters are uncertain, and the decision maker seeks a flow that minimizes cost assuming the worst-case realization of the disruptions. We evaluate the damage to each arc using a linear model, where the damage is the cumulative damage of all disruptions affecting the arc; and a maximum model, where the damage is given by the most destructive disruption affecting the arc. For both models, the arcs’ costs after disruptions are represented with a mixed-integer feasible region, resulting in a robust optimization problem with a mixed-integer uncertainty set. The main challenge to solve the problem comes from a subproblem that evaluates the worst-case cost for a given flow plan. We show that for the linear model the uncertainty set can be decomposed into a series of single disruption problems, which leads to a polynomial time algorithm for the subproblem. The uncertainty set of the maximum model, however, cannot be decomposed, and we show that the subproblem under this model is NP-hard. For this case, we further present a big-M free binary reformulation of the uncertainty set based on conflict constraints that results in a significantly smaller formulation with tighter linear programming relaxations. We extend the models by considering a less conservative approach where only a subset of the disruptions can occur and show that the properties of the linear and maximum models also hold in this case. We test our proposed approaches over real road networks and synthetics instances and show that our methods achieve orders of magnitude improvements over a standard approach from the literature. History: Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by the Air Force Office of Scientific Research [Grant FA9550-22-1-0236] and the Office of Naval Research [Grant N00014-19-1-2329]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.1243 ." @default.
- W4306406917 created "2022-10-17" @default.
- W4306406917 creator A5003995578 @default.
- W4306406917 creator A5036589411 @default.
- W4306406917 creator A5058341727 @default.
- W4306406917 date "2023-01-01" @default.
- W4306406917 modified "2023-10-16" @default.
- W4306406917 title "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions" @default.
- W4306406917 cites W1036579647 @default.
- W4306406917 cites W1557201052 @default.
- W4306406917 cites W1971796369 @default.
- W4306406917 cites W1972313188 @default.
- W4306406917 cites W1990275757 @default.
- W4306406917 cites W1993066916 @default.
- W4306406917 cites W1995285162 @default.
- W4306406917 cites W1999787908 @default.
- W4306406917 cites W2006093909 @default.
- W4306406917 cites W2006601554 @default.
- W4306406917 cites W2007468983 @default.
- W4306406917 cites W2013451793 @default.
- W4306406917 cites W2023174570 @default.
- W4306406917 cites W2033745948 @default.
- W4306406917 cites W2042816232 @default.
- W4306406917 cites W2045271791 @default.
- W4306406917 cites W2055668215 @default.
- W4306406917 cites W2058500540 @default.
- W4306406917 cites W2061614157 @default.
- W4306406917 cites W2069034437 @default.
- W4306406917 cites W2080122183 @default.
- W4306406917 cites W2082603400 @default.
- W4306406917 cites W2086551550 @default.
- W4306406917 cites W2089105401 @default.
- W4306406917 cites W2090926727 @default.
- W4306406917 cites W2093517413 @default.
- W4306406917 cites W2100387313 @default.
- W4306406917 cites W2102426156 @default.
- W4306406917 cites W2104212779 @default.
- W4306406917 cites W2108434419 @default.
- W4306406917 cites W2109427113 @default.
- W4306406917 cites W2118578357 @default.
- W4306406917 cites W2138865117 @default.
- W4306406917 cites W2155511751 @default.
- W4306406917 cites W2162165222 @default.
- W4306406917 cites W2164779904 @default.
- W4306406917 cites W2167106488 @default.
- W4306406917 cites W2337315713 @default.
- W4306406917 cites W2471223835 @default.
- W4306406917 cites W2499145065 @default.
- W4306406917 cites W2524329448 @default.
- W4306406917 cites W2563147102 @default.
- W4306406917 cites W2605397371 @default.
- W4306406917 cites W2739106750 @default.
- W4306406917 cites W2756033884 @default.
- W4306406917 cites W2803643768 @default.
- W4306406917 cites W2926419108 @default.
- W4306406917 cites W2962738726 @default.
- W4306406917 cites W2963127561 @default.
- W4306406917 cites W2990226387 @default.
- W4306406917 cites W3123538377 @default.
- W4306406917 cites W3156661518 @default.
- W4306406917 cites W4238107244 @default.
- W4306406917 cites W4251616545 @default.
- W4306406917 cites W77353308 @default.
- W4306406917 doi "https://doi.org/10.1287/ijoc.2022.1243" @default.
- W4306406917 hasPublicationYear "2023" @default.
- W4306406917 type Work @default.
- W4306406917 citedByCount "1" @default.
- W4306406917 crossrefType "journal-article" @default.
- W4306406917 hasAuthorship W4306406917A5003995578 @default.
- W4306406917 hasAuthorship W4306406917A5036589411 @default.
- W4306406917 hasAuthorship W4306406917A5058341727 @default.
- W4306406917 hasConcept C114809511 @default.
- W4306406917 hasConcept C126255220 @default.
- W4306406917 hasConcept C134306372 @default.
- W4306406917 hasConcept C177067428 @default.
- W4306406917 hasConcept C177148314 @default.
- W4306406917 hasConcept C177264268 @default.
- W4306406917 hasConcept C193254401 @default.
- W4306406917 hasConcept C199360897 @default.
- W4306406917 hasConcept C2524010 @default.
- W4306406917 hasConcept C33923547 @default.
- W4306406917 hasConcept C38349280 @default.
- W4306406917 hasConcept C41008148 @default.
- W4306406917 hasConcept C41045048 @default.
- W4306406917 hasConcept C56086750 @default.
- W4306406917 hasConcept C99545648 @default.
- W4306406917 hasConceptScore W4306406917C114809511 @default.
- W4306406917 hasConceptScore W4306406917C126255220 @default.
- W4306406917 hasConceptScore W4306406917C134306372 @default.
- W4306406917 hasConceptScore W4306406917C177067428 @default.
- W4306406917 hasConceptScore W4306406917C177148314 @default.
- W4306406917 hasConceptScore W4306406917C177264268 @default.
- W4306406917 hasConceptScore W4306406917C193254401 @default.
- W4306406917 hasConceptScore W4306406917C199360897 @default.
- W4306406917 hasConceptScore W4306406917C2524010 @default.
- W4306406917 hasConceptScore W4306406917C33923547 @default.
- W4306406917 hasConceptScore W4306406917C38349280 @default.
- W4306406917 hasConceptScore W4306406917C41008148 @default.