Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306407124> ?p ?o ?g. }
- W4306407124 abstract "This paper introduces a new human-based metaheuristic algorithm called Sewing Training-Based Optimization (STBO), which has applications in handling optimization tasks. The fundamental inspiration of STBO is teaching the process of sewing to beginner tailors. The theory of the proposed STBO approach is described and then mathematically modeled in three phases: (i) training, (ii) imitation of the instructor's skills, and (iii) practice. STBO performance is evaluated on fifty-two benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and the CEC 2017 test suite. The optimization results show that STBO, with its high power of exploration and exploitation, has provided suitable solutions for benchmark functions. The performance of STBO is compared with eleven well-known metaheuristic algorithms. The simulation results show that STBO, with its high ability to balance exploration and exploitation, has provided far more competitive performance in solving benchmark functions than competitor algorithms. Finally, the implementation of STBO in solving four engineering design problems demonstrates the capability of the proposed STBO in dealing with real-world applications." @default.
- W4306407124 created "2022-10-17" @default.
- W4306407124 creator A5058881776 @default.
- W4306407124 creator A5061679956 @default.
- W4306407124 creator A5082290011 @default.
- W4306407124 date "2022-10-17" @default.
- W4306407124 modified "2023-10-10" @default.
- W4306407124 title "A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training" @default.
- W4306407124 cites W137929096 @default.
- W4306407124 cites W1523741643 @default.
- W4306407124 cites W1527331442 @default.
- W4306407124 cites W1541288193 @default.
- W4306407124 cites W1585611690 @default.
- W4306407124 cites W1595159159 @default.
- W4306407124 cites W1965764284 @default.
- W4306407124 cites W1997600725 @default.
- W4306407124 cites W1999284878 @default.
- W4306407124 cites W2024060531 @default.
- W4306407124 cites W2031183907 @default.
- W4306407124 cites W2039577332 @default.
- W4306407124 cites W2061438946 @default.
- W4306407124 cites W2072955302 @default.
- W4306407124 cites W2096673585 @default.
- W4306407124 cites W2102343719 @default.
- W4306407124 cites W2109430017 @default.
- W4306407124 cites W2134816084 @default.
- W4306407124 cites W2151554678 @default.
- W4306407124 cites W2290883490 @default.
- W4306407124 cites W2607700698 @default.
- W4306407124 cites W2773918105 @default.
- W4306407124 cites W2782465233 @default.
- W4306407124 cites W2884377042 @default.
- W4306407124 cites W2888859070 @default.
- W4306407124 cites W2909240409 @default.
- W4306407124 cites W2922096023 @default.
- W4306407124 cites W2944431795 @default.
- W4306407124 cites W2953927818 @default.
- W4306407124 cites W2969626082 @default.
- W4306407124 cites W2976560662 @default.
- W4306407124 cites W2985845430 @default.
- W4306407124 cites W2995428710 @default.
- W4306407124 cites W3001336443 @default.
- W4306407124 cites W3007907254 @default.
- W4306407124 cites W3011104345 @default.
- W4306407124 cites W3080812861 @default.
- W4306407124 cites W3082974932 @default.
- W4306407124 cites W3083389769 @default.
- W4306407124 cites W3088252777 @default.
- W4306407124 cites W3105266672 @default.
- W4306407124 cites W3112428732 @default.
- W4306407124 cites W3113511853 @default.
- W4306407124 cites W3128381603 @default.
- W4306407124 cites W3144723597 @default.
- W4306407124 cites W3163903840 @default.
- W4306407124 cites W3166790192 @default.
- W4306407124 cites W3168798875 @default.
- W4306407124 cites W3179292964 @default.
- W4306407124 cites W3185076117 @default.
- W4306407124 cites W3186702421 @default.
- W4306407124 cites W3187846086 @default.
- W4306407124 cites W3189033801 @default.
- W4306407124 cites W3194904024 @default.
- W4306407124 cites W3206468654 @default.
- W4306407124 cites W3208005370 @default.
- W4306407124 cites W3208510759 @default.
- W4306407124 cites W3212797097 @default.
- W4306407124 cites W4205800966 @default.
- W4306407124 cites W4206918024 @default.
- W4306407124 cites W4211130072 @default.
- W4306407124 cites W4213413167 @default.
- W4306407124 cites W4252684946 @default.
- W4306407124 cites W4292635991 @default.
- W4306407124 doi "https://doi.org/10.1038/s41598-022-22458-9" @default.
- W4306407124 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36253404" @default.
- W4306407124 hasPublicationYear "2022" @default.
- W4306407124 type Work @default.
- W4306407124 citedByCount "13" @default.
- W4306407124 countsByYear W43064071242023 @default.
- W4306407124 crossrefType "journal-article" @default.
- W4306407124 hasAuthorship W4306407124A5058881776 @default.
- W4306407124 hasAuthorship W4306407124A5061679956 @default.
- W4306407124 hasAuthorship W4306407124A5082290011 @default.
- W4306407124 hasBestOaLocation W43064071241 @default.
- W4306407124 hasConcept C109718341 @default.
- W4306407124 hasConcept C111919701 @default.
- W4306407124 hasConcept C11413529 @default.
- W4306407124 hasConcept C119857082 @default.
- W4306407124 hasConcept C126255220 @default.
- W4306407124 hasConcept C13280743 @default.
- W4306407124 hasConcept C154945302 @default.
- W4306407124 hasConcept C166957645 @default.
- W4306407124 hasConcept C185798385 @default.
- W4306407124 hasConcept C205649164 @default.
- W4306407124 hasConcept C33923547 @default.
- W4306407124 hasConcept C41008148 @default.
- W4306407124 hasConcept C79581498 @default.
- W4306407124 hasConcept C95457728 @default.
- W4306407124 hasConcept C98045186 @default.
- W4306407124 hasConceptScore W4306407124C109718341 @default.
- W4306407124 hasConceptScore W4306407124C111919701 @default.