Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306408038> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4306408038 endingPage "e255" @default.
- W4306408038 startingPage "e250" @default.
- W4306408038 abstract "Objective: To develop a machine learning model that automatically quantifies the spread of blood in the surgical field using intraoperative videos of laparoscopic colorectal surgery and evaluate whether the index measured with the developed model can be used to assess tissue handling skill. Background: Although skill evaluation is crucial in laparoscopic surgery, existing evaluation systems suffer from evaluator subjectivity and are labor-intensive. Therefore, automatic evaluation using machine learning is potentially useful. Materials and Methods: In this retrospective experimental study, we used training data with annotated labels of blood or non-blood pixels on intraoperative images to develop a machine learning model to classify pixel RGB values into blood and non-blood. The blood pixel count per frame (the total number of blood pixels throughout a surgery divided by the number of frames) was compared among groups of surgeons with different tissue handling skills. Results: The overall accuracy of the machine learning model for the blood classification task was 85.7%. The high tissue handling skill group had the lowest blood pixel count per frame, and the novice surgeon group had the highest count (mean [SD]: high tissue handling skill group 20972.23 [19287.05] vs. low tissue handling skill group 34473.42 [28144.29] vs. novice surgeon group 50630.04 [42427.76], P <0.01). The difference between any 2 groups was significant. Conclusions: We developed a machine learning model to measure blood pixels in laparoscopic colorectal surgery images using RGB information. The blood pixel count per frame measured with this model significantly correlated with surgeons’ tissue handling skills." @default.
- W4306408038 created "2022-10-17" @default.
- W4306408038 creator A5007126631 @default.
- W4306408038 creator A5019377666 @default.
- W4306408038 creator A5025659566 @default.
- W4306408038 creator A5042284512 @default.
- W4306408038 creator A5050545841 @default.
- W4306408038 creator A5062506663 @default.
- W4306408038 creator A5073735058 @default.
- W4306408038 creator A5074529562 @default.
- W4306408038 creator A5083112074 @default.
- W4306408038 date "2022-10-17" @default.
- W4306408038 modified "2023-09-29" @default.
- W4306408038 title "Machine learning-based Automatic Evaluation of Tissue Handling Skills in Laparoscopic Colorectal Surgery: A Retrospective Experimental Study" @default.
- W4306408038 cites W2008764848 @default.
- W4306408038 cites W2023276160 @default.
- W4306408038 cites W2048178968 @default.
- W4306408038 cites W2052094517 @default.
- W4306408038 cites W2107835408 @default.
- W4306408038 cites W2112563529 @default.
- W4306408038 cites W2121960517 @default.
- W4306408038 cites W2123553877 @default.
- W4306408038 cites W2960559916 @default.
- W4306408038 cites W2998875253 @default.
- W4306408038 cites W3012790942 @default.
- W4306408038 cites W3061235327 @default.
- W4306408038 cites W3081981897 @default.
- W4306408038 cites W3123462290 @default.
- W4306408038 cites W3187783200 @default.
- W4306408038 cites W4200138919 @default.
- W4306408038 doi "https://doi.org/10.1097/sla.0000000000005731" @default.
- W4306408038 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36250677" @default.
- W4306408038 hasPublicationYear "2022" @default.
- W4306408038 type Work @default.
- W4306408038 citedByCount "3" @default.
- W4306408038 countsByYear W43064080382023 @default.
- W4306408038 crossrefType "journal-article" @default.
- W4306408038 hasAuthorship W4306408038A5007126631 @default.
- W4306408038 hasAuthorship W4306408038A5019377666 @default.
- W4306408038 hasAuthorship W4306408038A5025659566 @default.
- W4306408038 hasAuthorship W4306408038A5042284512 @default.
- W4306408038 hasAuthorship W4306408038A5050545841 @default.
- W4306408038 hasAuthorship W4306408038A5062506663 @default.
- W4306408038 hasAuthorship W4306408038A5073735058 @default.
- W4306408038 hasAuthorship W4306408038A5074529562 @default.
- W4306408038 hasAuthorship W4306408038A5083112074 @default.
- W4306408038 hasConcept C119857082 @default.
- W4306408038 hasConcept C126042441 @default.
- W4306408038 hasConcept C141071460 @default.
- W4306408038 hasConcept C154945302 @default.
- W4306408038 hasConcept C160633673 @default.
- W4306408038 hasConcept C2776111594 @default.
- W4306408038 hasConcept C2780047204 @default.
- W4306408038 hasConcept C2991743468 @default.
- W4306408038 hasConcept C41008148 @default.
- W4306408038 hasConcept C71924100 @default.
- W4306408038 hasConcept C76155785 @default.
- W4306408038 hasConceptScore W4306408038C119857082 @default.
- W4306408038 hasConceptScore W4306408038C126042441 @default.
- W4306408038 hasConceptScore W4306408038C141071460 @default.
- W4306408038 hasConceptScore W4306408038C154945302 @default.
- W4306408038 hasConceptScore W4306408038C160633673 @default.
- W4306408038 hasConceptScore W4306408038C2776111594 @default.
- W4306408038 hasConceptScore W4306408038C2780047204 @default.
- W4306408038 hasConceptScore W4306408038C2991743468 @default.
- W4306408038 hasConceptScore W4306408038C41008148 @default.
- W4306408038 hasConceptScore W4306408038C71924100 @default.
- W4306408038 hasConceptScore W4306408038C76155785 @default.
- W4306408038 hasIssue "2" @default.
- W4306408038 hasLocation W43064080381 @default.
- W4306408038 hasLocation W43064080382 @default.
- W4306408038 hasOpenAccess W4306408038 @default.
- W4306408038 hasPrimaryLocation W43064080381 @default.
- W4306408038 hasRelatedWork W2361592294 @default.
- W4306408038 hasRelatedWork W2366515927 @default.
- W4306408038 hasRelatedWork W2368936510 @default.
- W4306408038 hasRelatedWork W2369526291 @default.
- W4306408038 hasRelatedWork W2373562280 @default.
- W4306408038 hasRelatedWork W2375173177 @default.
- W4306408038 hasRelatedWork W2380479735 @default.
- W4306408038 hasRelatedWork W2389430687 @default.
- W4306408038 hasRelatedWork W2390961722 @default.
- W4306408038 hasRelatedWork W4225117199 @default.
- W4306408038 hasVolume "278" @default.
- W4306408038 isParatext "false" @default.
- W4306408038 isRetracted "false" @default.
- W4306408038 workType "article" @default.