Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306409691> ?p ?o ?g. }
- W4306409691 endingPage "19465" @default.
- W4306409691 startingPage "19447" @default.
- W4306409691 abstract "Abstract With the increasing use of CubeSats in space exploration, the demand for reliable high-temperature shape memory alloys (HTSMA) continues to grow. A wide range of HTSMAs has been investigated over the past decade but finding suitable alloys by means of trial-and-error experiments is cumbersome and time-consuming. The present work uses a data-driven approach to identify NiTiHf alloys suitable for actuator applications in space. Seven machine learning (ML) models were evaluated, and the best fit model was selected to identify new alloy compositions with targeted transformation temperature (Ms), thermal hysteresis, and work output. Of the studied models, the K-nearest neighbouring ML model offers more reliable and accurate prediction in developing NiTiHf alloys with balanced functional properties and aids our existing understanding on compositional dependence of transformation temperature, thermal hysteresis and work output. For instance, the transformation temperature of NiTiHf alloys is more sensitive to Ni variation with increasing Hf content. A maximum Ms reduction rate of 6.12 °C per 0.01 at.% Ni is attained at 30 at.% Hf, and with a Ni content between 50 and 51 at.%. Graphical abstract" @default.
- W4306409691 created "2022-10-17" @default.
- W4306409691 creator A5046238570 @default.
- W4306409691 creator A5051535922 @default.
- W4306409691 creator A5078676652 @default.
- W4306409691 creator A5078711649 @default.
- W4306409691 creator A5090136607 @default.
- W4306409691 date "2022-10-17" @default.
- W4306409691 modified "2023-10-16" @default.
- W4306409691 title "Machine learning guided alloy design of high-temperature NiTiHf shape memory alloys" @default.
- W4306409691 cites W1483017121 @default.
- W4306409691 cites W1967364025 @default.
- W4306409691 cites W1973565005 @default.
- W4306409691 cites W2003233573 @default.
- W4306409691 cites W2011619688 @default.
- W4306409691 cites W2013075309 @default.
- W4306409691 cites W2030008155 @default.
- W4306409691 cites W2032093899 @default.
- W4306409691 cites W2041983530 @default.
- W4306409691 cites W2051168191 @default.
- W4306409691 cites W2071276866 @default.
- W4306409691 cites W2082434484 @default.
- W4306409691 cites W2084151324 @default.
- W4306409691 cites W2095042667 @default.
- W4306409691 cites W2097467456 @default.
- W4306409691 cites W2141391704 @default.
- W4306409691 cites W2279882458 @default.
- W4306409691 cites W2334719992 @default.
- W4306409691 cites W2336777458 @default.
- W4306409691 cites W2534854333 @default.
- W4306409691 cites W2565976767 @default.
- W4306409691 cites W2568014457 @default.
- W4306409691 cites W2621154673 @default.
- W4306409691 cites W2735841118 @default.
- W4306409691 cites W2771893925 @default.
- W4306409691 cites W2792390777 @default.
- W4306409691 cites W2794002433 @default.
- W4306409691 cites W2797704094 @default.
- W4306409691 cites W2810908830 @default.
- W4306409691 cites W2888834215 @default.
- W4306409691 cites W2898554759 @default.
- W4306409691 cites W2905332814 @default.
- W4306409691 cites W2911861686 @default.
- W4306409691 cites W2912573428 @default.
- W4306409691 cites W2921873493 @default.
- W4306409691 cites W2947003781 @default.
- W4306409691 cites W2968412940 @default.
- W4306409691 cites W2976766051 @default.
- W4306409691 cites W2998281950 @default.
- W4306409691 cites W3008467393 @default.
- W4306409691 cites W3009841337 @default.
- W4306409691 cites W3016356924 @default.
- W4306409691 cites W3036874051 @default.
- W4306409691 cites W3071939411 @default.
- W4306409691 cites W3081996281 @default.
- W4306409691 cites W3093650100 @default.
- W4306409691 cites W3110977315 @default.
- W4306409691 cites W3118408232 @default.
- W4306409691 cites W3120513125 @default.
- W4306409691 cites W3126714751 @default.
- W4306409691 cites W3127839092 @default.
- W4306409691 cites W3131483989 @default.
- W4306409691 cites W3159176400 @default.
- W4306409691 cites W3183804499 @default.
- W4306409691 cites W3204847511 @default.
- W4306409691 cites W3205631417 @default.
- W4306409691 cites W3206180841 @default.
- W4306409691 cites W3209530124 @default.
- W4306409691 cites W4210501934 @default.
- W4306409691 cites W4210834114 @default.
- W4306409691 cites W4213070072 @default.
- W4306409691 cites W4281382809 @default.
- W4306409691 doi "https://doi.org/10.1007/s10853-022-07793-6" @default.
- W4306409691 hasPublicationYear "2022" @default.
- W4306409691 type Work @default.
- W4306409691 citedByCount "2" @default.
- W4306409691 countsByYear W43064096912023 @default.
- W4306409691 crossrefType "journal-article" @default.
- W4306409691 hasAuthorship W4306409691A5046238570 @default.
- W4306409691 hasAuthorship W4306409691A5051535922 @default.
- W4306409691 hasAuthorship W4306409691A5078676652 @default.
- W4306409691 hasAuthorship W4306409691A5078711649 @default.
- W4306409691 hasAuthorship W4306409691A5090136607 @default.
- W4306409691 hasBestOaLocation W43064096911 @default.
- W4306409691 hasConcept C104317684 @default.
- W4306409691 hasConcept C121332964 @default.
- W4306409691 hasConcept C123299182 @default.
- W4306409691 hasConcept C134306372 @default.
- W4306409691 hasConcept C154945302 @default.
- W4306409691 hasConcept C159985019 @default.
- W4306409691 hasConcept C172707124 @default.
- W4306409691 hasConcept C185592680 @default.
- W4306409691 hasConcept C18762648 @default.
- W4306409691 hasConcept C191897082 @default.
- W4306409691 hasConcept C192562407 @default.
- W4306409691 hasConcept C204241405 @default.
- W4306409691 hasConcept C204530211 @default.
- W4306409691 hasConcept C26873012 @default.