Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306410083> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4306410083 abstract "Summary Nowadays, artificial intelligence‐based medicine plays an important role in determining correlations not comprehensible to humans. In addition, the segmentation of organs at risk is a tedious and time‐consuming procedure. Segmentation of these organs or tissues is widely used in early diagnosis, treatment planning, and diagnosis. In this study, we trained semantic segmentation networks to segment healthy parotid glands using deep learning. The dataset we used in the study was obtained from Recep Tayyip Erdogan University Training and Research Hospital, and there were 72 T2‐weighted magnetic resonance (MR) images in this dataset. After these images were manually segmented by experts, masks of these images were obtained according to them and all images were cropped. Afterward, these cropped images and masks were rotated 45°, 120°, and 210°, quadrupling the number of images. We trained ResNet‐18/MobileNetV2‐based DeepLab v3+ without augmentation and ResNet‐18/MobileNetV2‐based DeepLab v3+ with augmentation using these datasets. Here, we set the training set and testing set sizes for all architectures to be 80% and 20%, respectively. We designed two different graphical user interface (GUI) applications so that users can easily segment their parotid glands by utilizing all of these deep learning‐based semantic segmentation networks. From the results, mean‐weighted dice values of MobileNetV2‐based DeepLab v3+ without augmentation and ResNet‐18‐based DeepLab v3+ with augmentation were equal to 0.90845–0.93931 and 0.93237–0.96960, respectively. We also noted that the sensitivity (%), specificity (%), F 1 score (%) values of these models were equal to 83.21, 96.65, 85.04 and 89.81, 97.84, 87.80, respectively. As a result, these designed models were found to be clinically successful, and the user‐friendly GUI applications of these proposed systems can be used by clinicians. This study is competitive as it uses MR images, can automatically segment both parotid glands, the results are meaningful according to the literature and have software application." @default.
- W4306410083 created "2022-10-17" @default.
- W4306410083 creator A5014596039 @default.
- W4306410083 creator A5044812982 @default.
- W4306410083 creator A5054066284 @default.
- W4306410083 creator A5083628584 @default.
- W4306410083 date "2022-10-17" @default.
- W4306410083 modified "2023-10-18" @default.
- W4306410083 title "Comparative parotid gland segmentation by using <scp>ResNet</scp>‐18 and <scp>MobileNetV2</scp> based <scp>DeepLab</scp> v3+ architectures from magnetic resonance images" @default.
- W4306410083 cites W1506921544 @default.
- W4306410083 cites W1982263770 @default.
- W4306410083 cites W2002968221 @default.
- W4306410083 cites W2091695913 @default.
- W4306410083 cites W2093542654 @default.
- W4306410083 cites W2143926641 @default.
- W4306410083 cites W2156808562 @default.
- W4306410083 cites W2560725027 @default.
- W4306410083 cites W2592939477 @default.
- W4306410083 cites W2593013519 @default.
- W4306410083 cites W2809628938 @default.
- W4306410083 cites W2885477007 @default.
- W4306410083 cites W2895619167 @default.
- W4306410083 cites W2900237898 @default.
- W4306410083 cites W2917837889 @default.
- W4306410083 cites W2946394741 @default.
- W4306410083 cites W2974851778 @default.
- W4306410083 cites W2978708129 @default.
- W4306410083 cites W2997731739 @default.
- W4306410083 cites W3006460367 @default.
- W4306410083 cites W3041894125 @default.
- W4306410083 cites W3042125681 @default.
- W4306410083 cites W3116861932 @default.
- W4306410083 cites W3120302815 @default.
- W4306410083 cites W3122131007 @default.
- W4306410083 cites W3204145332 @default.
- W4306410083 cites W3207972043 @default.
- W4306410083 doi "https://doi.org/10.1002/cpe.7405" @default.
- W4306410083 hasPublicationYear "2022" @default.
- W4306410083 type Work @default.
- W4306410083 citedByCount "6" @default.
- W4306410083 countsByYear W43064100832023 @default.
- W4306410083 crossrefType "journal-article" @default.
- W4306410083 hasAuthorship W4306410083A5014596039 @default.
- W4306410083 hasAuthorship W4306410083A5044812982 @default.
- W4306410083 hasAuthorship W4306410083A5054066284 @default.
- W4306410083 hasAuthorship W4306410083A5083628584 @default.
- W4306410083 hasConcept C108583219 @default.
- W4306410083 hasConcept C115961682 @default.
- W4306410083 hasConcept C126838900 @default.
- W4306410083 hasConcept C143409427 @default.
- W4306410083 hasConcept C153180895 @default.
- W4306410083 hasConcept C154945302 @default.
- W4306410083 hasConcept C177264268 @default.
- W4306410083 hasConcept C199360897 @default.
- W4306410083 hasConcept C2944601119 @default.
- W4306410083 hasConcept C41008148 @default.
- W4306410083 hasConcept C71924100 @default.
- W4306410083 hasConcept C89600930 @default.
- W4306410083 hasConceptScore W4306410083C108583219 @default.
- W4306410083 hasConceptScore W4306410083C115961682 @default.
- W4306410083 hasConceptScore W4306410083C126838900 @default.
- W4306410083 hasConceptScore W4306410083C143409427 @default.
- W4306410083 hasConceptScore W4306410083C153180895 @default.
- W4306410083 hasConceptScore W4306410083C154945302 @default.
- W4306410083 hasConceptScore W4306410083C177264268 @default.
- W4306410083 hasConceptScore W4306410083C199360897 @default.
- W4306410083 hasConceptScore W4306410083C2944601119 @default.
- W4306410083 hasConceptScore W4306410083C41008148 @default.
- W4306410083 hasConceptScore W4306410083C71924100 @default.
- W4306410083 hasConceptScore W4306410083C89600930 @default.
- W4306410083 hasIssue "1" @default.
- W4306410083 hasLocation W43064100831 @default.
- W4306410083 hasOpenAccess W4306410083 @default.
- W4306410083 hasPrimaryLocation W43064100831 @default.
- W4306410083 hasRelatedWork W2738221750 @default.
- W4306410083 hasRelatedWork W2790662084 @default.
- W4306410083 hasRelatedWork W2915754718 @default.
- W4306410083 hasRelatedWork W2954384599 @default.
- W4306410083 hasRelatedWork W2960184797 @default.
- W4306410083 hasRelatedWork W3012401223 @default.
- W4306410083 hasRelatedWork W3104734424 @default.
- W4306410083 hasRelatedWork W3209779739 @default.
- W4306410083 hasRelatedWork W4226289457 @default.
- W4306410083 hasRelatedWork W4285827401 @default.
- W4306410083 hasVolume "35" @default.
- W4306410083 isParatext "false" @default.
- W4306410083 isRetracted "false" @default.
- W4306410083 workType "article" @default.