Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306410386> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4306410386 endingPage "100536" @default.
- W4306410386 startingPage "100536" @default.
- W4306410386 abstract "Autonomous vehicles rely on sensors such as cameras and Lidar to collect data to make safe driving decisions. However, the sensors of a single-vehicle may be blocked or interfered with, and insufficient perception limits the safety of autonomous driving. Cooperative perception is to expand the perception domain of a single vehicle by sharing the perception data. Cooperative perception based on V2V (Vehicle to Vehicle) broadcast communication mode still might transmit a large amount of redundant data. Based on C-V2V (Cellular Vehicle to Vehicle) mmWave communication, fortunately, the edge server interconnected with the 5G small cell base station provides the possibility of centralized processing to leverage the perception interactive features among vehicles to carry on effective cooperative perception scheming. In this paper, a method based on deep reinforcement learning is designed to make centralized decisions to optimize the synergy of cooperative perception. In a highway scene, the road is firstly partitioned into several regions. As for each region, the interactive perception features of local vehicles and the regional perception features are obtained by an embedding method. Subsequently, according to the embedded features, the deep Q-learning network generates a perception combination of multiple vehicles to improve the perception synergy. Compared with the baselines, our proposed method improves the perception synergy. The experiment results show that our trained model has generalization ability and the end-to-end delay is under the constraint of safety critical applications." @default.
- W4306410386 created "2022-10-17" @default.
- W4306410386 creator A5026587704 @default.
- W4306410386 creator A5047156936 @default.
- W4306410386 date "2022-12-01" @default.
- W4306410386 modified "2023-09-24" @default.
- W4306410386 title "Perception synergy optimization with deep reinforcement learning for cooperative perception in C-V2V scenarios" @default.
- W4306410386 cites W1998011866 @default.
- W4306410386 cites W2023835067 @default.
- W4306410386 cites W2031575274 @default.
- W4306410386 cites W2346367588 @default.
- W4306410386 cites W2795061130 @default.
- W4306410386 cites W2885703553 @default.
- W4306410386 cites W2971544482 @default.
- W4306410386 cites W3045049179 @default.
- W4306410386 cites W3045936617 @default.
- W4306410386 cites W3082549826 @default.
- W4306410386 cites W3127717643 @default.
- W4306410386 cites W3163148797 @default.
- W4306410386 doi "https://doi.org/10.1016/j.vehcom.2022.100536" @default.
- W4306410386 hasPublicationYear "2022" @default.
- W4306410386 type Work @default.
- W4306410386 citedByCount "0" @default.
- W4306410386 crossrefType "journal-article" @default.
- W4306410386 hasAuthorship W4306410386A5026587704 @default.
- W4306410386 hasAuthorship W4306410386A5047156936 @default.
- W4306410386 hasConcept C107457646 @default.
- W4306410386 hasConcept C154945302 @default.
- W4306410386 hasConcept C15744967 @default.
- W4306410386 hasConcept C169760540 @default.
- W4306410386 hasConcept C26760741 @default.
- W4306410386 hasConcept C41008148 @default.
- W4306410386 hasConcept C67203356 @default.
- W4306410386 hasConcept C77805123 @default.
- W4306410386 hasConcept C97541855 @default.
- W4306410386 hasConceptScore W4306410386C107457646 @default.
- W4306410386 hasConceptScore W4306410386C154945302 @default.
- W4306410386 hasConceptScore W4306410386C15744967 @default.
- W4306410386 hasConceptScore W4306410386C169760540 @default.
- W4306410386 hasConceptScore W4306410386C26760741 @default.
- W4306410386 hasConceptScore W4306410386C41008148 @default.
- W4306410386 hasConceptScore W4306410386C67203356 @default.
- W4306410386 hasConceptScore W4306410386C77805123 @default.
- W4306410386 hasConceptScore W4306410386C97541855 @default.
- W4306410386 hasLocation W43064103861 @default.
- W4306410386 hasOpenAccess W4306410386 @default.
- W4306410386 hasPrimaryLocation W43064103861 @default.
- W4306410386 hasRelatedWork W2923653485 @default.
- W4306410386 hasRelatedWork W2952472710 @default.
- W4306410386 hasRelatedWork W2957776456 @default.
- W4306410386 hasRelatedWork W2959276766 @default.
- W4306410386 hasRelatedWork W3005560120 @default.
- W4306410386 hasRelatedWork W3037422413 @default.
- W4306410386 hasRelatedWork W4206669594 @default.
- W4306410386 hasRelatedWork W4224287422 @default.
- W4306410386 hasRelatedWork W4255994452 @default.
- W4306410386 hasRelatedWork W4319773215 @default.
- W4306410386 hasVolume "38" @default.
- W4306410386 isParatext "false" @default.
- W4306410386 isRetracted "false" @default.
- W4306410386 workType "article" @default.