Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306632336> ?p ?o ?g. }
- W4306632336 endingPage "103467" @default.
- W4306632336 startingPage "103467" @default.
- W4306632336 abstract "Crystallographic orientation data are used as a precursor to various microstructural and textural analyses as well as to perform simulations such as crystal plasticity. In the current study, a novel method is developed to reconstruct orientation data from the images of inverse pole figure (IPF) maps and sections of orientation distribution functions (ODFs) extracted from published articles. Crystallographic orientation can be expressed by Miller indices { h k l } 〈 u v w 〉 where the { h k l } plane normal is parallel to the normal direction (ND) and the 〈 u v w 〉 direction is parallel to the rolling direction (RD) of the specimen. The { h k l } values of the orientations were obtained by the image processing of ND-IPF maps while the corresponding 〈 u v w 〉 values were obtained by optimization of the ODF sections via the use of a genetic algorithm (GA). The MTEX software was used to generate ODF sections with optimized data, and these were then compared with real ODF sections to evaluate the error function of the GA. The quality of the reconstruction of orientation data was evaluated by performing the proposed method on images from the ND-IPF map and ODF sections produced through previously available experimental data. The results of both reconstructed and actual data were compared in terms of grain-size distribution, misorientation-angle distribution, texture component fractions, and the overall { h k l } and 〈 u v w 〉 axis distributions. Furthermore, a visco-plastic self-consistent (VPSC) simulation equipped with a Marciniak-Kuczyński (M-K) model along with visco-plastic fast Fourier transform (VPFFT) simulation was applied to reconstructed orientation data in order to obtain the plastic strain ratio (r-value), the forming limit curves (FLCs), and the strain localization distribution, respectively." @default.
- W4306632336 created "2022-10-18" @default.
- W4306632336 creator A5022940100 @default.
- W4306632336 creator A5030544836 @default.
- W4306632336 creator A5057559688 @default.
- W4306632336 creator A5069107913 @default.
- W4306632336 creator A5072596221 @default.
- W4306632336 creator A5076740731 @default.
- W4306632336 date "2022-12-01" @default.
- W4306632336 modified "2023-09-29" @default.
- W4306632336 title "Reconstructing orientation data from the images of IPF maps and ODF sections extracted from the literature: A data-collection method for machine learning" @default.
- W4306632336 cites W1965155622 @default.
- W4306632336 cites W1968178572 @default.
- W4306632336 cites W1971300598 @default.
- W4306632336 cites W1991824779 @default.
- W4306632336 cites W1992322550 @default.
- W4306632336 cites W1997390602 @default.
- W4306632336 cites W2000595666 @default.
- W4306632336 cites W2001033433 @default.
- W4306632336 cites W2003663219 @default.
- W4306632336 cites W2020102839 @default.
- W4306632336 cites W2020846635 @default.
- W4306632336 cites W2038397269 @default.
- W4306632336 cites W2040108089 @default.
- W4306632336 cites W2050236324 @default.
- W4306632336 cites W2050387601 @default.
- W4306632336 cites W2053874958 @default.
- W4306632336 cites W2054188261 @default.
- W4306632336 cites W2055678244 @default.
- W4306632336 cites W2058506329 @default.
- W4306632336 cites W2066068468 @default.
- W4306632336 cites W2073721207 @default.
- W4306632336 cites W2087808998 @default.
- W4306632336 cites W2088687796 @default.
- W4306632336 cites W2094057144 @default.
- W4306632336 cites W2117238266 @default.
- W4306632336 cites W2120842598 @default.
- W4306632336 cites W2135164339 @default.
- W4306632336 cites W2145834282 @default.
- W4306632336 cites W2147688967 @default.
- W4306632336 cites W2255289587 @default.
- W4306632336 cites W2346180883 @default.
- W4306632336 cites W2462290730 @default.
- W4306632336 cites W2510741519 @default.
- W4306632336 cites W2527179280 @default.
- W4306632336 cites W2599810842 @default.
- W4306632336 cites W2612102553 @default.
- W4306632336 cites W2798224450 @default.
- W4306632336 cites W2804083182 @default.
- W4306632336 cites W2927409383 @default.
- W4306632336 cites W2934689719 @default.
- W4306632336 cites W2953641512 @default.
- W4306632336 cites W2956908933 @default.
- W4306632336 cites W2962770349 @default.
- W4306632336 cites W2989579282 @default.
- W4306632336 cites W3009135007 @default.
- W4306632336 cites W3021716354 @default.
- W4306632336 cites W3036734221 @default.
- W4306632336 cites W3081860453 @default.
- W4306632336 cites W3087022735 @default.
- W4306632336 cites W3091055370 @default.
- W4306632336 cites W3107714972 @default.
- W4306632336 cites W3125007152 @default.
- W4306632336 cites W3127365350 @default.
- W4306632336 cites W3151892545 @default.
- W4306632336 cites W3179206453 @default.
- W4306632336 cites W3198852199 @default.
- W4306632336 cites W3203591811 @default.
- W4306632336 cites W3204054887 @default.
- W4306632336 cites W3208687975 @default.
- W4306632336 cites W3211191632 @default.
- W4306632336 cites W4205109620 @default.
- W4306632336 cites W4206071388 @default.
- W4306632336 cites W4206765716 @default.
- W4306632336 cites W4255085265 @default.
- W4306632336 doi "https://doi.org/10.1016/j.ijplas.2022.103467" @default.
- W4306632336 hasPublicationYear "2022" @default.
- W4306632336 type Work @default.
- W4306632336 citedByCount "3" @default.
- W4306632336 countsByYear W43066323362023 @default.
- W4306632336 crossrefType "journal-article" @default.
- W4306632336 hasAuthorship W4306632336A5022940100 @default.
- W4306632336 hasAuthorship W4306632336A5030544836 @default.
- W4306632336 hasAuthorship W4306632336A5057559688 @default.
- W4306632336 hasAuthorship W4306632336A5069107913 @default.
- W4306632336 hasAuthorship W4306632336A5072596221 @default.
- W4306632336 hasAuthorship W4306632336A5076740731 @default.
- W4306632336 hasConcept C105795698 @default.
- W4306632336 hasConcept C133462117 @default.
- W4306632336 hasConcept C153180895 @default.
- W4306632336 hasConcept C154945302 @default.
- W4306632336 hasConcept C16345878 @default.
- W4306632336 hasConcept C192562407 @default.
- W4306632336 hasConcept C2524010 @default.
- W4306632336 hasConcept C31972630 @default.
- W4306632336 hasConcept C33923547 @default.
- W4306632336 hasConcept C41008148 @default.
- W4306632336 hasConceptScore W4306632336C105795698 @default.