Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306643606> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4306643606 abstract "The present first part about the eventual completeness of mathematics (called Hilbert mathematics) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. Thus, the pair of arithmetic and set are to be similar to Euclidean and non-Euclidean geometries distinguishably only by the Fifth postulate now, i.e. after replacing it and its negation correspondingly by the axiom of finiteness (induction) versus that of finiteness being idempotent negations to each other. Indeed, the axiom of choice, as far as it is equivalent to the well-ordering theorem, transforms any set in a well-ordering either necessarily finite according to the axiom of induction or also optionally infinite according to the axiom of infinity. So, the Gödel incompleteness statement relies on the logical contradiction of the axiom of induction and the axiom of infinity in the final analysis. Nonetheless, both can be considered as two idempotent versions of the same axiom (analogically to the Fifth postulate) and then unified after logicism and its inherent intensionality since the opposition of finiteness and infinity can be only extensional (i.e., relevant to the elements of any set rather than to the set by itself or its characteristic property being a proposition). So, the pathway for interpreting the Gödel incompleteness statement as an axiom and the originating from that assumption for Hilbert mathematics accepting its negation is pioneered. A much wider context relevant to realizing the Gödel incompleteness statement as a metamathematical axiom is consistently built step by step. The horizon of Hilbert mathematics is the proper subject in the third part of the paper, and a reinterpretation of Gödel's papers (1930; 1931) as an apology of logicism as the only consistent foundations of mathematics is the topic of the next second part." @default.
- W4306643606 created "2022-10-18" @default.
- W4306643606 creator A5078620575 @default.
- W4306643606 date "2022-10-17" @default.
- W4306643606 modified "2023-10-14" @default.
- W4306643606 title "Gödel mathematics versus Hilbert mathematics. I The Gödel incompleteness (1931) statement: axiom or theorem?" @default.
- W4306643606 doi "https://doi.org/10.22541/au.166603230.07636849/v1" @default.
- W4306643606 hasPublicationYear "2022" @default.
- W4306643606 type Work @default.
- W4306643606 citedByCount "0" @default.
- W4306643606 crossrefType "posted-content" @default.
- W4306643606 hasAuthorship W4306643606A5078620575 @default.
- W4306643606 hasBestOaLocation W43066436061 @default.
- W4306643606 hasConcept C118615104 @default.
- W4306643606 hasConcept C127753061 @default.
- W4306643606 hasConcept C136119220 @default.
- W4306643606 hasConcept C151797676 @default.
- W4306643606 hasConcept C153046414 @default.
- W4306643606 hasConcept C167729594 @default.
- W4306643606 hasConcept C177264268 @default.
- W4306643606 hasConcept C199360897 @default.
- W4306643606 hasConcept C202444582 @default.
- W4306643606 hasConcept C2185349 @default.
- W4306643606 hasConcept C2524010 @default.
- W4306643606 hasConcept C33923547 @default.
- W4306643606 hasConcept C41008148 @default.
- W4306643606 hasConcept C51460 @default.
- W4306643606 hasConcept C556429856 @default.
- W4306643606 hasConcept C78550038 @default.
- W4306643606 hasConcept C97489613 @default.
- W4306643606 hasConceptScore W4306643606C118615104 @default.
- W4306643606 hasConceptScore W4306643606C127753061 @default.
- W4306643606 hasConceptScore W4306643606C136119220 @default.
- W4306643606 hasConceptScore W4306643606C151797676 @default.
- W4306643606 hasConceptScore W4306643606C153046414 @default.
- W4306643606 hasConceptScore W4306643606C167729594 @default.
- W4306643606 hasConceptScore W4306643606C177264268 @default.
- W4306643606 hasConceptScore W4306643606C199360897 @default.
- W4306643606 hasConceptScore W4306643606C202444582 @default.
- W4306643606 hasConceptScore W4306643606C2185349 @default.
- W4306643606 hasConceptScore W4306643606C2524010 @default.
- W4306643606 hasConceptScore W4306643606C33923547 @default.
- W4306643606 hasConceptScore W4306643606C41008148 @default.
- W4306643606 hasConceptScore W4306643606C51460 @default.
- W4306643606 hasConceptScore W4306643606C556429856 @default.
- W4306643606 hasConceptScore W4306643606C78550038 @default.
- W4306643606 hasConceptScore W4306643606C97489613 @default.
- W4306643606 hasLocation W43066436061 @default.
- W4306643606 hasLocation W43066436062 @default.
- W4306643606 hasLocation W43066436063 @default.
- W4306643606 hasLocation W43066436064 @default.
- W4306643606 hasLocation W43066436065 @default.
- W4306643606 hasOpenAccess W4306643606 @default.
- W4306643606 hasPrimaryLocation W43066436061 @default.
- W4306643606 hasRelatedWork W1620972513 @default.
- W4306643606 hasRelatedWork W2140995860 @default.
- W4306643606 hasRelatedWork W3047205667 @default.
- W4306643606 hasRelatedWork W309761522 @default.
- W4306643606 hasRelatedWork W3204724066 @default.
- W4306643606 hasRelatedWork W4296044419 @default.
- W4306643606 hasRelatedWork W4306155959 @default.
- W4306643606 hasRelatedWork W4306318234 @default.
- W4306643606 hasRelatedWork W4306643606 @default.
- W4306643606 hasRelatedWork W2613063579 @default.
- W4306643606 isParatext "false" @default.
- W4306643606 isRetracted "false" @default.
- W4306643606 workType "article" @default.