Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306652015> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4306652015 abstract "Infrared imagery is extensively used in defense, remote sensing and medical applications. While the infrared images have many advantages over RGB images, the details in these images are usually blurred which in turn leads to some difficulties for human operators. In this paper, a new method based on Laplacian of Gaussian scale-space and local variance is presented to improve the visual quality of the infrared images. At the first step, the Gaussian scale-space is constructed by convolving the original image with different Gaussian kernels. Then, the two-dimensional Laplacian kernels are convolved with the Gaussian scale-space to achieve details with both positive as well as negative contrasts. The weighted details are added to the original image to deblur the dim areas. At the final step, to increase the dynamic range of the image and have better visual quality, the local variance of the image is also added to the output of the previous step. Since finding optimum weighting coefficients is a difficult task empirically, here, we use a population-based meta-heuristic optimization algorithm called particle swarm optimization (PSO) to find the optimum values for weighting coefficient values. Beside qualitative comparison, Structural Similarity (SSIM) and second-derivative-like measure of enhancement (SDME) are used to quantitatively investigate the images quality. The proposed method outperforms the baseline algorithms in both qualitative and quantitative perspectives." @default.
- W4306652015 created "2022-10-18" @default.
- W4306652015 creator A5037133186 @default.
- W4306652015 creator A5041919930 @default.
- W4306652015 creator A5058683878 @default.
- W4306652015 creator A5068995536 @default.
- W4306652015 date "2022-10-15" @default.
- W4306652015 modified "2023-09-25" @default.
- W4306652015 title "Infrared Image Enhancement Based on Optimally Weighted Multi-Scale Laplacian of Gaussian and Local Statistics Using Particle Swarm Optimization" @default.
- W4306652015 doi "https://doi.org/10.1142/s0219467824500141" @default.
- W4306652015 hasPublicationYear "2022" @default.
- W4306652015 type Work @default.
- W4306652015 citedByCount "0" @default.
- W4306652015 crossrefType "journal-article" @default.
- W4306652015 hasAuthorship W4306652015A5037133186 @default.
- W4306652015 hasAuthorship W4306652015A5041919930 @default.
- W4306652015 hasAuthorship W4306652015A5058683878 @default.
- W4306652015 hasAuthorship W4306652015A5068995536 @default.
- W4306652015 hasConcept C11413529 @default.
- W4306652015 hasConcept C115961682 @default.
- W4306652015 hasConcept C121332964 @default.
- W4306652015 hasConcept C126838900 @default.
- W4306652015 hasConcept C144024400 @default.
- W4306652015 hasConcept C149923435 @default.
- W4306652015 hasConcept C153180895 @default.
- W4306652015 hasConcept C154945302 @default.
- W4306652015 hasConcept C163716315 @default.
- W4306652015 hasConcept C183115368 @default.
- W4306652015 hasConcept C193536780 @default.
- W4306652015 hasConcept C2908647359 @default.
- W4306652015 hasConcept C29168087 @default.
- W4306652015 hasConcept C33923547 @default.
- W4306652015 hasConcept C41008148 @default.
- W4306652015 hasConcept C62520636 @default.
- W4306652015 hasConcept C71924100 @default.
- W4306652015 hasConcept C7218915 @default.
- W4306652015 hasConcept C85617194 @default.
- W4306652015 hasConcept C9417928 @default.
- W4306652015 hasConcept C99102927 @default.
- W4306652015 hasConceptScore W4306652015C11413529 @default.
- W4306652015 hasConceptScore W4306652015C115961682 @default.
- W4306652015 hasConceptScore W4306652015C121332964 @default.
- W4306652015 hasConceptScore W4306652015C126838900 @default.
- W4306652015 hasConceptScore W4306652015C144024400 @default.
- W4306652015 hasConceptScore W4306652015C149923435 @default.
- W4306652015 hasConceptScore W4306652015C153180895 @default.
- W4306652015 hasConceptScore W4306652015C154945302 @default.
- W4306652015 hasConceptScore W4306652015C163716315 @default.
- W4306652015 hasConceptScore W4306652015C183115368 @default.
- W4306652015 hasConceptScore W4306652015C193536780 @default.
- W4306652015 hasConceptScore W4306652015C2908647359 @default.
- W4306652015 hasConceptScore W4306652015C29168087 @default.
- W4306652015 hasConceptScore W4306652015C33923547 @default.
- W4306652015 hasConceptScore W4306652015C41008148 @default.
- W4306652015 hasConceptScore W4306652015C62520636 @default.
- W4306652015 hasConceptScore W4306652015C71924100 @default.
- W4306652015 hasConceptScore W4306652015C7218915 @default.
- W4306652015 hasConceptScore W4306652015C85617194 @default.
- W4306652015 hasConceptScore W4306652015C9417928 @default.
- W4306652015 hasConceptScore W4306652015C99102927 @default.
- W4306652015 hasLocation W43066520151 @default.
- W4306652015 hasOpenAccess W4306652015 @default.
- W4306652015 hasPrimaryLocation W43066520151 @default.
- W4306652015 hasRelatedWork W2076441903 @default.
- W4306652015 hasRelatedWork W2108748717 @default.
- W4306652015 hasRelatedWork W2136184105 @default.
- W4306652015 hasRelatedWork W2140056392 @default.
- W4306652015 hasRelatedWork W2359341291 @default.
- W4306652015 hasRelatedWork W2547139440 @default.
- W4306652015 hasRelatedWork W4231951694 @default.
- W4306652015 hasRelatedWork W4243487617 @default.
- W4306652015 hasRelatedWork W2106595108 @default.
- W4306652015 hasRelatedWork W2171535634 @default.
- W4306652015 isParatext "false" @default.
- W4306652015 isRetracted "false" @default.
- W4306652015 workType "article" @default.