Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306653204> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4306653204 endingPage "3347" @default.
- W4306653204 startingPage "3347" @default.
- W4306653204 abstract "The precise segmentation of bladder tumors from MRI is essential for bladder cancer diagnosis and personalized therapy selection. Limited by the properties of tumor morphology, achieving precise segmentation from MRI images remains challenging. In recent years, deep convolutional neural networks have provided a promising solution for bladder tumor segmentation from MRI. However, deep-learning-based methods still face two weakness: (1) multi-scale feature extraction and utilization are inadequate, being limited by the learning approach. (2) The establishment of explicit long-distance dependence is difficult due to the limited receptive field of convolution kernels. These limitations raise challenges in the learning of global semantic information, which is critical for bladder cancer segmentation. To tackle the problem, a newly auxiliary segmentation algorithm integrating a multi-scale encoder and decoder with a transformer is proposed, which is called MSEDTNet. Specifically, the designed encoder with multi-scale pyramidal convolution (MSPC) is utilized to generate compact feature maps which capture the richly detailed local features of the image. Furthermore, the transformer bottleneck is then leveraged to model the long-distance dependency between high-level tumor semantics from a global space. Finally, a decoder with a spatial context fusion module (SCFM) is adopted to fuse the context information and gradually produce high-resolution segmentation results. The experimental results of T2-weighted MRI scans from 86 patients show that MSEDTNet achieves an overall Jaccard index of 83.46%, a Dice similarity coefficient of 92.35%, and a complexity less than that of other, similar models. This suggests that the method proposed in this article can be used as an efficient tool for clinical bladder cancer segmentation." @default.
- W4306653204 created "2022-10-18" @default.
- W4306653204 creator A5083889663 @default.
- W4306653204 creator A5088263932 @default.
- W4306653204 date "2022-10-17" @default.
- W4306653204 modified "2023-09-26" @default.
- W4306653204 title "MSEDTNet: Multi-Scale Encoder and Decoder with Transformer for Bladder Tumor Segmentation" @default.
- W4306653204 cites W2157435012 @default.
- W4306653204 cites W2473162054 @default.
- W4306653204 cites W2592939477 @default.
- W4306653204 cites W2959092091 @default.
- W4306653204 cites W2966323851 @default.
- W4306653204 cites W3004820526 @default.
- W4306653204 cites W3035201044 @default.
- W4306653204 cites W3103805449 @default.
- W4306653204 cites W3120619669 @default.
- W4306653204 cites W3120862679 @default.
- W4306653204 cites W3152382904 @default.
- W4306653204 cites W3157159473 @default.
- W4306653204 cites W3160730820 @default.
- W4306653204 cites W3164337968 @default.
- W4306653204 cites W3184820801 @default.
- W4306653204 cites W3186295935 @default.
- W4306653204 cites W3212385994 @default.
- W4306653204 cites W4206264994 @default.
- W4306653204 cites W4220816188 @default.
- W4306653204 doi "https://doi.org/10.3390/electronics11203347" @default.
- W4306653204 hasPublicationYear "2022" @default.
- W4306653204 type Work @default.
- W4306653204 citedByCount "1" @default.
- W4306653204 countsByYear W43066532042023 @default.
- W4306653204 crossrefType "journal-article" @default.
- W4306653204 hasAuthorship W4306653204A5083889663 @default.
- W4306653204 hasAuthorship W4306653204A5088263932 @default.
- W4306653204 hasBestOaLocation W43066532041 @default.
- W4306653204 hasConcept C108583219 @default.
- W4306653204 hasConcept C111919701 @default.
- W4306653204 hasConcept C118505674 @default.
- W4306653204 hasConcept C124504099 @default.
- W4306653204 hasConcept C153180895 @default.
- W4306653204 hasConcept C154945302 @default.
- W4306653204 hasConcept C203519979 @default.
- W4306653204 hasConcept C31972630 @default.
- W4306653204 hasConcept C41008148 @default.
- W4306653204 hasConcept C81363708 @default.
- W4306653204 hasConcept C89600930 @default.
- W4306653204 hasConceptScore W4306653204C108583219 @default.
- W4306653204 hasConceptScore W4306653204C111919701 @default.
- W4306653204 hasConceptScore W4306653204C118505674 @default.
- W4306653204 hasConceptScore W4306653204C124504099 @default.
- W4306653204 hasConceptScore W4306653204C153180895 @default.
- W4306653204 hasConceptScore W4306653204C154945302 @default.
- W4306653204 hasConceptScore W4306653204C203519979 @default.
- W4306653204 hasConceptScore W4306653204C31972630 @default.
- W4306653204 hasConceptScore W4306653204C41008148 @default.
- W4306653204 hasConceptScore W4306653204C81363708 @default.
- W4306653204 hasConceptScore W4306653204C89600930 @default.
- W4306653204 hasFunder F4320321001 @default.
- W4306653204 hasIssue "20" @default.
- W4306653204 hasLocation W43066532041 @default.
- W4306653204 hasLocation W43066532042 @default.
- W4306653204 hasOpenAccess W4306653204 @default.
- W4306653204 hasPrimaryLocation W43066532041 @default.
- W4306653204 hasRelatedWork W2441762250 @default.
- W4306653204 hasRelatedWork W2731899572 @default.
- W4306653204 hasRelatedWork W2969790209 @default.
- W4306653204 hasRelatedWork W3116150086 @default.
- W4306653204 hasRelatedWork W3133861977 @default.
- W4306653204 hasRelatedWork W3135324209 @default.
- W4306653204 hasRelatedWork W4200173597 @default.
- W4306653204 hasRelatedWork W4285827401 @default.
- W4306653204 hasRelatedWork W4312417841 @default.
- W4306653204 hasRelatedWork W4321369474 @default.
- W4306653204 hasVolume "11" @default.
- W4306653204 isParatext "false" @default.
- W4306653204 isRetracted "false" @default.
- W4306653204 workType "article" @default.