Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306678085> ?p ?o ?g. }
- W4306678085 endingPage "119681" @default.
- W4306678085 startingPage "119681" @default.
- W4306678085 abstract "The prevailing gold standard for presurgical determination of epileptogenic brain networks is intracerebral EEG, a potent yet invasive approach. Magnetoencephalography (MEG) is a state-of-the art non-invasive method for investigating epileptiform discharges. However, it is not clear at what level the precision offered by MEG can reach that of SEEG. Here, we present a strategy for non-invasively retrieving the constituents of the interictal network, with high spatial and temporal precision. Our method is based on MEG and a combination of spatial filtering and independent component analysis (ICA). We validated this approach in twelve patients with drug-resistant focal epilepsy, thanks to the unprecedented ground truth provided by simultaneous recordings of MEG and SEEG. A minimum variance adaptive beamformer estimated the source time series and ICA was used to further decompose these time series into network constituents (MEG-ICs), each having a time series (virtual electrode) and a topography (spatial distribution of amplitudes in the brain). We show that MEG has a considerable sensitivity of 0.80 and 0.84 and a specificity of 0.93 and 0.91 for reconstructing deep and superficial sources, respectively, when compared to the ground truth (SEEG). For each epileptic MEG-IC (n = 131), we found at least one significantly correlating SEEG contact close to zero lag after correcting for multiple comparisons. All the patients except one had at least one epileptic component that was highly correlated (Spearman rho>0.3) with that of SEEG traces. MEG-ICs correlated well with SEEG traces. The strength of correlation coefficients did not depend on the depth of the SEEG contacts or the clinical outcome of the patient. A significant proportion of the MEG-ICs (n = 83/131) were localized in proximity with their maximally correlating SEEG, within a mean distance of 20±12.18mm. Our research is the first to validate the MEG-retrieved beamformer IC sources against SEEG-derived ground truth in a simultaneous MEG-SEEG framework. Observations from the present study suggest that non-invasive MEG source components may potentially provide additional information, comparable to SEEG in a number of instances." @default.
- W4306678085 created "2022-10-19" @default.
- W4306678085 creator A5003748573 @default.
- W4306678085 creator A5011895215 @default.
- W4306678085 creator A5026964632 @default.
- W4306678085 creator A5038450788 @default.
- W4306678085 creator A5059657541 @default.
- W4306678085 creator A5063349875 @default.
- W4306678085 creator A5070112483 @default.
- W4306678085 creator A5073216157 @default.
- W4306678085 creator A5083949654 @default.
- W4306678085 creator A5090764517 @default.
- W4306678085 date "2022-12-01" @default.
- W4306678085 modified "2023-10-18" @default.
- W4306678085 title "Virtual MEG sensors based on beamformer and independent component analysis can reconstruct epileptic activity as measured on simultaneous intracerebral recordings" @default.
- W4306678085 cites W1582245736 @default.
- W4306678085 cites W1967815854 @default.
- W4306678085 cites W1974165416 @default.
- W4306678085 cites W1978298662 @default.
- W4306678085 cites W1981105937 @default.
- W4306678085 cites W1983740074 @default.
- W4306678085 cites W2016453624 @default.
- W4306678085 cites W2021285908 @default.
- W4306678085 cites W2026906073 @default.
- W4306678085 cites W2042268039 @default.
- W4306678085 cites W2043425833 @default.
- W4306678085 cites W2051884096 @default.
- W4306678085 cites W2054294508 @default.
- W4306678085 cites W2056925087 @default.
- W4306678085 cites W2058137820 @default.
- W4306678085 cites W2063171028 @default.
- W4306678085 cites W2065287743 @default.
- W4306678085 cites W2065613049 @default.
- W4306678085 cites W2071565881 @default.
- W4306678085 cites W2076560156 @default.
- W4306678085 cites W2077216604 @default.
- W4306678085 cites W2079537726 @default.
- W4306678085 cites W2084583517 @default.
- W4306678085 cites W2115606700 @default.
- W4306678085 cites W2116373155 @default.
- W4306678085 cites W2117420048 @default.
- W4306678085 cites W2119309793 @default.
- W4306678085 cites W2120078534 @default.
- W4306678085 cites W2153999689 @default.
- W4306678085 cites W2156627053 @default.
- W4306678085 cites W2160919040 @default.
- W4306678085 cites W2164221920 @default.
- W4306678085 cites W2208166657 @default.
- W4306678085 cites W2294422415 @default.
- W4306678085 cites W2344566456 @default.
- W4306678085 cites W2418779657 @default.
- W4306678085 cites W2466901773 @default.
- W4306678085 cites W2512070733 @default.
- W4306678085 cites W2551722370 @default.
- W4306678085 cites W2760196906 @default.
- W4306678085 cites W2767596243 @default.
- W4306678085 cites W2794569597 @default.
- W4306678085 cites W2797825016 @default.
- W4306678085 cites W2805042218 @default.
- W4306678085 cites W2885591357 @default.
- W4306678085 cites W2916138623 @default.
- W4306678085 cites W2944781452 @default.
- W4306678085 cites W2956997599 @default.
- W4306678085 cites W2975525520 @default.
- W4306678085 cites W3019388008 @default.
- W4306678085 cites W3034147310 @default.
- W4306678085 cites W3093268152 @default.
- W4306678085 cites W3153433522 @default.
- W4306678085 doi "https://doi.org/10.1016/j.neuroimage.2022.119681" @default.
- W4306678085 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36270623" @default.
- W4306678085 hasPublicationYear "2022" @default.
- W4306678085 type Work @default.
- W4306678085 citedByCount "3" @default.
- W4306678085 countsByYear W43066780852023 @default.
- W4306678085 crossrefType "journal-article" @default.
- W4306678085 hasAuthorship W4306678085A5003748573 @default.
- W4306678085 hasAuthorship W4306678085A5011895215 @default.
- W4306678085 hasAuthorship W4306678085A5026964632 @default.
- W4306678085 hasAuthorship W4306678085A5038450788 @default.
- W4306678085 hasAuthorship W4306678085A5059657541 @default.
- W4306678085 hasAuthorship W4306678085A5063349875 @default.
- W4306678085 hasAuthorship W4306678085A5070112483 @default.
- W4306678085 hasAuthorship W4306678085A5073216157 @default.
- W4306678085 hasAuthorship W4306678085A5083949654 @default.
- W4306678085 hasAuthorship W4306678085A5090764517 @default.
- W4306678085 hasConcept C153180895 @default.
- W4306678085 hasConcept C154945302 @default.
- W4306678085 hasConcept C15744967 @default.
- W4306678085 hasConcept C169760540 @default.
- W4306678085 hasConcept C17755696 @default.
- W4306678085 hasConcept C41008148 @default.
- W4306678085 hasConcept C51432778 @default.
- W4306678085 hasConcept C522805319 @default.
- W4306678085 hasConcept C556910895 @default.
- W4306678085 hasConcept C98254291 @default.
- W4306678085 hasConceptScore W4306678085C153180895 @default.
- W4306678085 hasConceptScore W4306678085C154945302 @default.
- W4306678085 hasConceptScore W4306678085C15744967 @default.