Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306678312> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4306678312 endingPage "106223" @default.
- W4306678312 startingPage "106223" @default.
- W4306678312 abstract "The Kidney and Kidney Tumor Segmentation Challenge 2021 (KiTS21) released a kidney CT dataset with 300 patients. Unlike KiTS19, KiTS21 provided a cyst category. Therefore, the segmentation of kidneys, tumors, and cysts will be able to assess the complexity and aggressiveness of kidney mass. Deep learning models can save medical resources, but 3D models still have some disadvantages, such as the high cost of computing resources. This paper proposes a scheme that saves computing resources and achieves the segmentation of kidney mass in two steps. First, we preprocess the kidney volume data using the automatic down-sampling method of 3D images, reducing the volume while preserving the feature information. Second, we finely segment kidneys, tumors, and cysts using the AgDenseU-Net (Attention gate DenseU-Net) 2.5D model. KiTS21 proposed using Hierarchical Evaluation Classes (HECs) to compute a metric for the superset: the HEC of kidney considers kidneys, tumors, and cysts as the foreground to compute segmentation performance; the HEC of kidney mass considers both tumor and cyst as the foreground classes; the HEC of tumor considers tumor as the foreground only. For KiTS21, our model achieved a dice score of 0.971 for the kidney, 0.883 for the mass, and 0.815 for the tumor. In addition, we also tested segmentation results without HECs, and our model achieved a dice score of 0.950 for the kidney, 0.878 for the tumor, and 0.746 for the cyst. The results demonstrate that the method proposed in this paper can be used as a reference for kidney tumor segmentation." @default.
- W4306678312 created "2022-10-19" @default.
- W4306678312 creator A5020219655 @default.
- W4306678312 creator A5028986731 @default.
- W4306678312 creator A5033133176 @default.
- W4306678312 creator A5041982037 @default.
- W4306678312 creator A5061820818 @default.
- W4306678312 creator A5082911374 @default.
- W4306678312 creator A5083399200 @default.
- W4306678312 creator A5088701762 @default.
- W4306678312 date "2022-11-01" @default.
- W4306678312 modified "2023-09-29" @default.
- W4306678312 title "Segmentation of kidney mass using AgDenseU-Net 2.5D model" @default.
- W4306678312 cites W3030515889 @default.
- W4306678312 cites W3090605478 @default.
- W4306678312 cites W3100270977 @default.
- W4306678312 cites W3135689743 @default.
- W4306678312 cites W3206729073 @default.
- W4306678312 cites W3216917249 @default.
- W4306678312 cites W4200274794 @default.
- W4306678312 cites W4220708534 @default.
- W4306678312 doi "https://doi.org/10.1016/j.compbiomed.2022.106223" @default.
- W4306678312 hasPublicationYear "2022" @default.
- W4306678312 type Work @default.
- W4306678312 citedByCount "0" @default.
- W4306678312 crossrefType "journal-article" @default.
- W4306678312 hasAuthorship W4306678312A5020219655 @default.
- W4306678312 hasAuthorship W4306678312A5028986731 @default.
- W4306678312 hasAuthorship W4306678312A5033133176 @default.
- W4306678312 hasAuthorship W4306678312A5041982037 @default.
- W4306678312 hasAuthorship W4306678312A5061820818 @default.
- W4306678312 hasAuthorship W4306678312A5082911374 @default.
- W4306678312 hasAuthorship W4306678312A5083399200 @default.
- W4306678312 hasAuthorship W4306678312A5088701762 @default.
- W4306678312 hasConcept C121332964 @default.
- W4306678312 hasConcept C126322002 @default.
- W4306678312 hasConcept C154945302 @default.
- W4306678312 hasConcept C162324750 @default.
- W4306678312 hasConcept C176217482 @default.
- W4306678312 hasConcept C20556612 @default.
- W4306678312 hasConcept C21547014 @default.
- W4306678312 hasConcept C2780091579 @default.
- W4306678312 hasConcept C41008148 @default.
- W4306678312 hasConcept C62520636 @default.
- W4306678312 hasConcept C71924100 @default.
- W4306678312 hasConcept C89600930 @default.
- W4306678312 hasConceptScore W4306678312C121332964 @default.
- W4306678312 hasConceptScore W4306678312C126322002 @default.
- W4306678312 hasConceptScore W4306678312C154945302 @default.
- W4306678312 hasConceptScore W4306678312C162324750 @default.
- W4306678312 hasConceptScore W4306678312C176217482 @default.
- W4306678312 hasConceptScore W4306678312C20556612 @default.
- W4306678312 hasConceptScore W4306678312C21547014 @default.
- W4306678312 hasConceptScore W4306678312C2780091579 @default.
- W4306678312 hasConceptScore W4306678312C41008148 @default.
- W4306678312 hasConceptScore W4306678312C62520636 @default.
- W4306678312 hasConceptScore W4306678312C71924100 @default.
- W4306678312 hasConceptScore W4306678312C89600930 @default.
- W4306678312 hasLocation W43066783121 @default.
- W4306678312 hasOpenAccess W4306678312 @default.
- W4306678312 hasPrimaryLocation W43066783121 @default.
- W4306678312 hasRelatedWork W2005437358 @default.
- W4306678312 hasRelatedWork W2134924024 @default.
- W4306678312 hasRelatedWork W2138214894 @default.
- W4306678312 hasRelatedWork W2358941527 @default.
- W4306678312 hasRelatedWork W2361006516 @default.
- W4306678312 hasRelatedWork W2387675639 @default.
- W4306678312 hasRelatedWork W2394327295 @default.
- W4306678312 hasRelatedWork W266446692 @default.
- W4306678312 hasRelatedWork W2954384599 @default.
- W4306678312 hasRelatedWork W3107474891 @default.
- W4306678312 hasVolume "150" @default.
- W4306678312 isParatext "false" @default.
- W4306678312 isRetracted "false" @default.
- W4306678312 workType "article" @default.