Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306737650> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4306737650 endingPage "552" @default.
- W4306737650 startingPage "544" @default.
- W4306737650 abstract "Knowledge discovery in biomedical data using supervised methods assumes that the data contain structure relevant to the class structure if a classifier can be trained to assign a case to the correct class better than by guessing. In this setting, acceptance or rejection of a scientific hypothesis may depend critically on the ability to classify cases better than randomly, without high classification performance being the primary goal. Random forests are often chosen for knowledge-discovery tasks because they are considered a powerful classifier that does not require sophisticated data transformation or hyperparameter tuning and can be regarded as a reference classifier for tabular numerical data. Here, we report a case where the failure of random forests using the default hyperparameter settings in the standard implementations of R and Python would have led to the rejection of the hypothesis that the data contained structure relevant to the class structure. After tuning the hyperparameters, classification performance increased from 56% to 65% balanced accuracy in R, and from 55% to 67% balanced accuracy in Python. More importantly, the 95% confidence intervals in the tuned versions were to the right of the value of 50% that characterizes guessing-level classification. Thus, tuning provided the desired evidence that the data structure supported the class structure of the data set. In this case, the tuning made more than a quantitative difference in the form of slightly better classification accuracy, but significantly changed the interpretation of the data set. This is especially true when classification performance is low and a small improvement increases the balanced accuracy to over 50% when guessing." @default.
- W4306737650 created "2022-10-19" @default.
- W4306737650 creator A5073863447 @default.
- W4306737650 creator A5090927399 @default.
- W4306737650 date "2022-10-18" @default.
- W4306737650 modified "2023-10-14" @default.
- W4306737650 title "A Biomedical Case Study Showing That Tuning Random Forests Can Fundamentally Change the Interpretation of Supervised Data Structure Exploration Aimed at Knowledge Discovery" @default.
- W4306737650 cites W157448225 @default.
- W4306737650 cites W172260869 @default.
- W4306737650 cites W1959835345 @default.
- W4306737650 cites W1969761972 @default.
- W4306737650 cites W1977405994 @default.
- W4306737650 cites W1980801609 @default.
- W4306737650 cites W1988195734 @default.
- W4306737650 cites W2006617902 @default.
- W4306737650 cites W2027642651 @default.
- W4306737650 cites W2074466695 @default.
- W4306737650 cites W2101807845 @default.
- W4306737650 cites W2122111042 @default.
- W4306737650 cites W2137983211 @default.
- W4306737650 cites W2150913357 @default.
- W4306737650 cites W2171435705 @default.
- W4306737650 cites W2342249984 @default.
- W4306737650 cites W2511892808 @default.
- W4306737650 cites W2737706773 @default.
- W4306737650 cites W2810908830 @default.
- W4306737650 cites W2911964244 @default.
- W4306737650 cites W3099878876 @default.
- W4306737650 cites W3102027041 @default.
- W4306737650 cites W3103145119 @default.
- W4306737650 cites W4230900352 @default.
- W4306737650 cites W4239510810 @default.
- W4306737650 cites W4299627282 @default.
- W4306737650 doi "https://doi.org/10.3390/biomedinformatics2040034" @default.
- W4306737650 hasPublicationYear "2022" @default.
- W4306737650 type Work @default.
- W4306737650 citedByCount "3" @default.
- W4306737650 countsByYear W43067376502022 @default.
- W4306737650 countsByYear W43067376502023 @default.
- W4306737650 crossrefType "journal-article" @default.
- W4306737650 hasAuthorship W4306737650A5073863447 @default.
- W4306737650 hasAuthorship W4306737650A5090927399 @default.
- W4306737650 hasBestOaLocation W43067376501 @default.
- W4306737650 hasConcept C111919701 @default.
- W4306737650 hasConcept C119857082 @default.
- W4306737650 hasConcept C124101348 @default.
- W4306737650 hasConcept C153180895 @default.
- W4306737650 hasConcept C154945302 @default.
- W4306737650 hasConcept C162319229 @default.
- W4306737650 hasConcept C169258074 @default.
- W4306737650 hasConcept C199360897 @default.
- W4306737650 hasConcept C41008148 @default.
- W4306737650 hasConcept C519991488 @default.
- W4306737650 hasConcept C8642999 @default.
- W4306737650 hasConcept C95623464 @default.
- W4306737650 hasConceptScore W4306737650C111919701 @default.
- W4306737650 hasConceptScore W4306737650C119857082 @default.
- W4306737650 hasConceptScore W4306737650C124101348 @default.
- W4306737650 hasConceptScore W4306737650C153180895 @default.
- W4306737650 hasConceptScore W4306737650C154945302 @default.
- W4306737650 hasConceptScore W4306737650C162319229 @default.
- W4306737650 hasConceptScore W4306737650C169258074 @default.
- W4306737650 hasConceptScore W4306737650C199360897 @default.
- W4306737650 hasConceptScore W4306737650C41008148 @default.
- W4306737650 hasConceptScore W4306737650C519991488 @default.
- W4306737650 hasConceptScore W4306737650C8642999 @default.
- W4306737650 hasConceptScore W4306737650C95623464 @default.
- W4306737650 hasFunder F4320320879 @default.
- W4306737650 hasIssue "4" @default.
- W4306737650 hasLocation W43067376501 @default.
- W4306737650 hasOpenAccess W4306737650 @default.
- W4306737650 hasPrimaryLocation W43067376501 @default.
- W4306737650 hasRelatedWork W3096565539 @default.
- W4306737650 hasRelatedWork W3204791388 @default.
- W4306737650 hasRelatedWork W4210794429 @default.
- W4306737650 hasRelatedWork W4223456145 @default.
- W4306737650 hasRelatedWork W4295309597 @default.
- W4306737650 hasRelatedWork W4308716060 @default.
- W4306737650 hasRelatedWork W4322775603 @default.
- W4306737650 hasRelatedWork W4323902652 @default.
- W4306737650 hasRelatedWork W4362544620 @default.
- W4306737650 hasRelatedWork W4375930479 @default.
- W4306737650 hasVolume "2" @default.
- W4306737650 isParatext "false" @default.
- W4306737650 isRetracted "false" @default.
- W4306737650 workType "article" @default.