Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306747315> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4306747315 endingPage "1303" @default.
- W4306747315 startingPage "1283" @default.
- W4306747315 abstract "The traffic signal recognition model plays a significant role in the intelligent transportation model, as traffic signals aid the drivers to driving the more professional with awareness. The primary goal of this paper is to proposea model that works for the recognition and detection of traffic signals. This work proposes the pre-processing and segmentation approach applying machine learning techniques are occurred recent trends of study. Initially, the median filter & histogram equalization technique is utilized for pre-processing the traffic signal images, and also information of the figures being increased. The contrast of the figures upgraded, and information about the color shape of traffic signals are applied by the model. To localize the traffic signal in the obtained image, then this region of interest in traffic signal figures are extracted. The traffic signal recognition and classification experiments are managed depending on the German Traffic Signal Recognition Benchmark-(GTSRB). Various machine learning techniques such as Support Vector Machine (SVM), Extreme Learning Machine (ELM), Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), Convolutional neural network (CNN)- General Regression Neural Network (GRNN) is used for the classification process. Finally, the obtained results will be compare in terms of the performance metrics like accuracy, F1 score, kappa score, jaccard score, sensitivity, specificity, recall, and precision. The result shows that CNN-GRNN with ML techniques by attaining 99.41% accuracy compare to other intelligent methods. In this proposed technique is used for detecting and classifying various categories of traffic signals to improve the accuracy and effectiveness of the system." @default.
- W4306747315 created "2022-10-19" @default.
- W4306747315 creator A5004297093 @default.
- W4306747315 creator A5020301433 @default.
- W4306747315 creator A5083339649 @default.
- W4306747315 creator A5086501962 @default.
- W4306747315 date "2023-01-05" @default.
- W4306747315 modified "2023-10-06" @default.
- W4306747315 title "A novel hybrid machine learning approach for traffic sign detection using CNN-GRNN" @default.
- W4306747315 cites W2095268412 @default.
- W4306747315 cites W2749552955 @default.
- W4306747315 cites W2908882634 @default.
- W4306747315 cites W2964461714 @default.
- W4306747315 cites W2973271139 @default.
- W4306747315 cites W2979395867 @default.
- W4306747315 cites W3027137431 @default.
- W4306747315 cites W3088757170 @default.
- W4306747315 cites W3095488976 @default.
- W4306747315 cites W3111897001 @default.
- W4306747315 cites W3121101473 @default.
- W4306747315 cites W3123751661 @default.
- W4306747315 cites W3135387830 @default.
- W4306747315 cites W3166386656 @default.
- W4306747315 cites W3167341124 @default.
- W4306747315 cites W3172505268 @default.
- W4306747315 cites W3190839331 @default.
- W4306747315 cites W3213111842 @default.
- W4306747315 cites W4200229038 @default.
- W4306747315 cites W4206510012 @default.
- W4306747315 cites W4206571851 @default.
- W4306747315 cites W4220773165 @default.
- W4306747315 cites W4221044719 @default.
- W4306747315 cites W4224739814 @default.
- W4306747315 cites W4285176535 @default.
- W4306747315 doi "https://doi.org/10.3233/jifs-221720" @default.
- W4306747315 hasPublicationYear "2023" @default.
- W4306747315 type Work @default.
- W4306747315 citedByCount "2" @default.
- W4306747315 countsByYear W43067473152023 @default.
- W4306747315 crossrefType "journal-article" @default.
- W4306747315 hasAuthorship W4306747315A5004297093 @default.
- W4306747315 hasAuthorship W4306747315A5020301433 @default.
- W4306747315 hasAuthorship W4306747315A5083339649 @default.
- W4306747315 hasAuthorship W4306747315A5086501962 @default.
- W4306747315 hasConcept C119857082 @default.
- W4306747315 hasConcept C12267149 @default.
- W4306747315 hasConcept C134306372 @default.
- W4306747315 hasConcept C139676723 @default.
- W4306747315 hasConcept C153180895 @default.
- W4306747315 hasConcept C154945302 @default.
- W4306747315 hasConcept C2983860417 @default.
- W4306747315 hasConcept C33923547 @default.
- W4306747315 hasConcept C41008148 @default.
- W4306747315 hasConcept C50644808 @default.
- W4306747315 hasConcept C6528762 @default.
- W4306747315 hasConcept C69738355 @default.
- W4306747315 hasConcept C81363708 @default.
- W4306747315 hasConceptScore W4306747315C119857082 @default.
- W4306747315 hasConceptScore W4306747315C12267149 @default.
- W4306747315 hasConceptScore W4306747315C134306372 @default.
- W4306747315 hasConceptScore W4306747315C139676723 @default.
- W4306747315 hasConceptScore W4306747315C153180895 @default.
- W4306747315 hasConceptScore W4306747315C154945302 @default.
- W4306747315 hasConceptScore W4306747315C2983860417 @default.
- W4306747315 hasConceptScore W4306747315C33923547 @default.
- W4306747315 hasConceptScore W4306747315C41008148 @default.
- W4306747315 hasConceptScore W4306747315C50644808 @default.
- W4306747315 hasConceptScore W4306747315C6528762 @default.
- W4306747315 hasConceptScore W4306747315C69738355 @default.
- W4306747315 hasConceptScore W4306747315C81363708 @default.
- W4306747315 hasIssue "1" @default.
- W4306747315 hasLocation W43067473151 @default.
- W4306747315 hasOpenAccess W4306747315 @default.
- W4306747315 hasPrimaryLocation W43067473151 @default.
- W4306747315 hasRelatedWork W1809065030 @default.
- W4306747315 hasRelatedWork W2118344708 @default.
- W4306747315 hasRelatedWork W2161688496 @default.
- W4306747315 hasRelatedWork W2992060548 @default.
- W4306747315 hasRelatedWork W2996933976 @default.
- W4306747315 hasRelatedWork W3208266890 @default.
- W4306747315 hasRelatedWork W4283820116 @default.
- W4306747315 hasRelatedWork W4309650776 @default.
- W4306747315 hasRelatedWork W4316659346 @default.
- W4306747315 hasRelatedWork W4378699879 @default.
- W4306747315 hasVolume "44" @default.
- W4306747315 isParatext "false" @default.
- W4306747315 isRetracted "false" @default.
- W4306747315 workType "article" @default.