Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306753418> ?p ?o ?g. }
- W4306753418 endingPage "104139" @default.
- W4306753418 startingPage "104139" @default.
- W4306753418 abstract "• An enhanced water cycle algorithm (SCWCA) incorporated with Renyi's entropy is proposed for image segmentation. • Sine initialization strategy (SS) and covariance matrix adaptive evolutionary strategy (CMA-ES) are introduced to improve WCA. • SCWCA is compared with other state-of-art algorithms on CEC2014 benchmark functions. • SCWCA is compared with other excellent peers on nine lupus nephritis images. • The excellent performance of the proposed method is demonstrated statistically. Lupus nephritis (LN) is one of the most common and serious clinical manifestations of systemic lupus erythematosus (SLE), which causes serious damage to the kidneys of patients. To effectively assist the pathological diagnosis of LN, many researchers utilize a scheme combining multi-threshold image segmentation (MIS) with metaheuristic algorithms (MAs) to classify LN. However, traditional MAs-based MIS methods tend to fall into local optima in the segmentation process and find it difficult to obtain the optimal threshold set. Aiming at this problem, this paper proposes an improved water cycle algorithm (SCWCA) and applies it to the MIS method to generate an SCWCA-based MIS method. Besides, this MIS method uses a non-local means 2D histogram to represent the image information and utilizes Renyi's entropy as the fitness function. First, SCWCA adds a sine initialization mechanism (SS) in the initial stage of the original WCA to generate the initial solution to improve the population quality. Second, the covariance matrix adaptation evolution strategy (CMA-ES) is applied in the population location update stage of WCA to mine high-quality population information. To validate the excellent performance of the SCWCA-based MIS method, the comparative experiment between some peers and SCWCA was carried out first. The experimental results show that the solution of SCWCA was closer to the global optimal solution and can effectively deal with the local optimal problems. In addition, the segmentation experiments of the SCWCA-based MIS method and other equivalent methods on LN images showed that the former can obtain higher-quality segmented LN images." @default.
- W4306753418 created "2022-10-19" @default.
- W4306753418 creator A5024138459 @default.
- W4306753418 creator A5027544741 @default.
- W4306753418 creator A5028441474 @default.
- W4306753418 creator A5034637503 @default.
- W4306753418 creator A5050574184 @default.
- W4306753418 creator A5055997024 @default.
- W4306753418 creator A5084512743 @default.
- W4306753418 creator A5087702334 @default.
- W4306753418 date "2023-02-01" @default.
- W4306753418 modified "2023-10-14" @default.
- W4306753418 title "Performance optimization of water cycle algorithm for multilevel lupus nephritis image segmentation" @default.
- W4306753418 cites W1595159159 @default.
- W4306753418 cites W1976744965 @default.
- W4306753418 cites W1977312644 @default.
- W4306753418 cites W1997600725 @default.
- W4306753418 cites W1999284878 @default.
- W4306753418 cites W2001657034 @default.
- W4306753418 cites W2004079471 @default.
- W4306753418 cites W2028031385 @default.
- W4306753418 cites W2031183907 @default.
- W4306753418 cites W2057225778 @default.
- W4306753418 cites W2061438946 @default.
- W4306753418 cites W2065731394 @default.
- W4306753418 cites W2068878490 @default.
- W4306753418 cites W2072175591 @default.
- W4306753418 cites W2072955302 @default.
- W4306753418 cites W2096166399 @default.
- W4306753418 cites W2096673585 @default.
- W4306753418 cites W2104460179 @default.
- W4306753418 cites W2104604585 @default.
- W4306753418 cites W2108475198 @default.
- W4306753418 cites W2112550675 @default.
- W4306753418 cites W2112667413 @default.
- W4306753418 cites W2114770744 @default.
- W4306753418 cites W2116512415 @default.
- W4306753418 cites W2127316787 @default.
- W4306753418 cites W2131613989 @default.
- W4306753418 cites W2133665775 @default.
- W4306753418 cites W2134154181 @default.
- W4306753418 cites W2137340504 @default.
- W4306753418 cites W2138889351 @default.
- W4306753418 cites W2141358266 @default.
- W4306753418 cites W2141983208 @default.
- W4306753418 cites W2151554678 @default.
- W4306753418 cites W2156999391 @default.
- W4306753418 cites W2162363668 @default.
- W4306753418 cites W2163848045 @default.
- W4306753418 cites W2165466912 @default.
- W4306753418 cites W2168081761 @default.
- W4306753418 cites W2217371171 @default.
- W4306753418 cites W2232317135 @default.
- W4306753418 cites W2290883490 @default.
- W4306753418 cites W2576444478 @default.
- W4306753418 cites W2582636227 @default.
- W4306753418 cites W2586121636 @default.
- W4306753418 cites W2594253738 @default.
- W4306753418 cites W2609339077 @default.
- W4306753418 cites W2611031776 @default.
- W4306753418 cites W2738900493 @default.
- W4306753418 cites W2766775005 @default.
- W4306753418 cites W2767768852 @default.
- W4306753418 cites W2783325233 @default.
- W4306753418 cites W2783628520 @default.
- W4306753418 cites W2786283205 @default.
- W4306753418 cites W2792036734 @default.
- W4306753418 cites W2794083222 @default.
- W4306753418 cites W2803478834 @default.
- W4306753418 cites W2808797111 @default.
- W4306753418 cites W2883039463 @default.
- W4306753418 cites W2898125895 @default.
- W4306753418 cites W2909982119 @default.
- W4306753418 cites W2918101442 @default.
- W4306753418 cites W2919979744 @default.
- W4306753418 cites W2926960342 @default.
- W4306753418 cites W2946297054 @default.
- W4306753418 cites W2947678382 @default.
- W4306753418 cites W2957685090 @default.
- W4306753418 cites W2960187325 @default.
- W4306753418 cites W2962004477 @default.
- W4306753418 cites W2966238001 @default.
- W4306753418 cites W2977238585 @default.
- W4306753418 cites W2979955841 @default.
- W4306753418 cites W2988423815 @default.
- W4306753418 cites W2990390143 @default.
- W4306753418 cites W3000097396 @default.
- W4306753418 cites W3003450920 @default.
- W4306753418 cites W3007156934 @default.
- W4306753418 cites W3009244492 @default.
- W4306753418 cites W3014974411 @default.
- W4306753418 cites W3018659302 @default.
- W4306753418 cites W3035183744 @default.
- W4306753418 cites W3035777076 @default.
- W4306753418 cites W3039945285 @default.
- W4306753418 cites W3043636152 @default.
- W4306753418 cites W3090431895 @default.
- W4306753418 cites W3092530991 @default.