Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306754912> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4306754912 endingPage "278" @default.
- W4306754912 startingPage "245" @default.
- W4306754912 abstract "Purpose Hundreds of thousands of deaths each year in the world are caused by breast cancer (BC). An early-stage diagnosis of this disease can positively reduce the morbidity and mortality rate by helping to select the most appropriate treatment options, especially by using histological BC images for the diagnosis. Design/methodology/approach The present study proposes and evaluates a novel approach which consists of 24 deep hybrid heterogenous ensembles that combine the strength of seven deep learning techniques (DenseNet 201, Inception V3, VGG16, VGG19, Inception-ResNet-V3, MobileNet V2 and ResNet 50) for feature extraction and four well-known classifiers (multi-layer perceptron, support vector machines, K-nearest neighbors and decision tree) by means of hard and weighted voting combination methods for histological classification of BC medical image. Furthermore, the best deep hybrid heterogenous ensembles were compared to the deep stacked ensembles to determine the best strategy to design the deep ensemble methods. The empirical evaluations used four classification performance criteria (accuracy, sensitivity, precision and F1-score), fivefold cross-validation, Scott–Knott (SK) statistical test and Borda count voting method. All empirical evaluations were assessed using four performance measures, including accuracy, precision, recall and F1-score, and were over the histological BreakHis public dataset with four magnification factors (40×, 100×, 200× and 400×). SK statistical test and Borda count were also used to cluster the designed techniques and rank the techniques belonging to the best SK cluster, respectively. Findings Results showed that the deep hybrid heterogenous ensembles outperformed both their singles and the deep stacked ensembles and reached the accuracy values of 96.3, 95.6, 96.3 and 94 per cent across the four magnification factors 40×, 100×, 200× and 400×, respectively. Originality/value The proposed deep hybrid heterogenous ensembles can be applied for the BC diagnosis to assist pathologists in reducing the missed diagnoses and proposing adequate treatments for the patients." @default.
- W4306754912 created "2022-10-19" @default.
- W4306754912 creator A5000218612 @default.
- W4306754912 creator A5012997021 @default.
- W4306754912 creator A5058118943 @default.
- W4306754912 date "2022-10-18" @default.
- W4306754912 modified "2023-09-26" @default.
- W4306754912 title "A new approach for histological classification of breast cancer using deep hybrid heterogenous ensemble" @default.
- W4306754912 cites W2043841926 @default.
- W4306754912 cites W2194775991 @default.
- W4306754912 cites W2531409750 @default.
- W4306754912 cites W2755012395 @default.
- W4306754912 cites W2809348156 @default.
- W4306754912 cites W2954665897 @default.
- W4306754912 cites W2963446712 @default.
- W4306754912 cites W3095595608 @default.
- W4306754912 cites W3138634112 @default.
- W4306754912 doi "https://doi.org/10.1108/dta-05-2022-0210" @default.
- W4306754912 hasPublicationYear "2022" @default.
- W4306754912 type Work @default.
- W4306754912 citedByCount "1" @default.
- W4306754912 countsByYear W43067549122023 @default.
- W4306754912 crossrefType "journal-article" @default.
- W4306754912 hasAuthorship W4306754912A5000218612 @default.
- W4306754912 hasAuthorship W4306754912A5012997021 @default.
- W4306754912 hasAuthorship W4306754912A5058118943 @default.
- W4306754912 hasConcept C108583219 @default.
- W4306754912 hasConcept C119857082 @default.
- W4306754912 hasConcept C12267149 @default.
- W4306754912 hasConcept C153180895 @default.
- W4306754912 hasConcept C154945302 @default.
- W4306754912 hasConcept C41008148 @default.
- W4306754912 hasConcept C50644808 @default.
- W4306754912 hasConcept C60908668 @default.
- W4306754912 hasConcept C84525736 @default.
- W4306754912 hasConceptScore W4306754912C108583219 @default.
- W4306754912 hasConceptScore W4306754912C119857082 @default.
- W4306754912 hasConceptScore W4306754912C12267149 @default.
- W4306754912 hasConceptScore W4306754912C153180895 @default.
- W4306754912 hasConceptScore W4306754912C154945302 @default.
- W4306754912 hasConceptScore W4306754912C41008148 @default.
- W4306754912 hasConceptScore W4306754912C50644808 @default.
- W4306754912 hasConceptScore W4306754912C60908668 @default.
- W4306754912 hasConceptScore W4306754912C84525736 @default.
- W4306754912 hasIssue "2" @default.
- W4306754912 hasLocation W43067549121 @default.
- W4306754912 hasOpenAccess W4306754912 @default.
- W4306754912 hasPrimaryLocation W43067549121 @default.
- W4306754912 hasRelatedWork W2084779923 @default.
- W4306754912 hasRelatedWork W2803710604 @default.
- W4306754912 hasRelatedWork W3127425528 @default.
- W4306754912 hasRelatedWork W3211546796 @default.
- W4306754912 hasRelatedWork W4283784365 @default.
- W4306754912 hasRelatedWork W4294067781 @default.
- W4306754912 hasRelatedWork W4311106074 @default.
- W4306754912 hasRelatedWork W4312192474 @default.
- W4306754912 hasRelatedWork W4320802194 @default.
- W4306754912 hasRelatedWork W4361795583 @default.
- W4306754912 hasVolume "57" @default.
- W4306754912 isParatext "false" @default.
- W4306754912 isRetracted "false" @default.
- W4306754912 workType "article" @default.