Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306765734> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4306765734 abstract "Nonlinear transient convection in a porous rectangle heated from below is studied by an analytically based method. Fourier series for the temperature and streamfunction are applied, where each Fourier coefficient evolves in time according to a coupled set of ordinary differential equations. The mathematical method can be considered as a recursive nonlinear mapping in Fourier space from a given state at a time t to an updated state at time t + dt, with an infinitesimal time increment. This nonlinear evolution in Fourier space requires normal-mode compatible boundary conditions along the entire boundary. Each Fourier coefficient gets three contributions during its updating in time: (i) one decay term due to thermal diffusion, governed by linear theory; (ii) one growth term due to buoyancy, governed by linear theory; and (iii) quadratic nonlinearities from the convection term in the heat equation, involving all pairwise interactions between the Fourier modes. We present numerical computations with a standard Runge–Kutta method, with Rayleigh numbers up to ten times the well-known critical value 4π2. Our plots are produced with Fourier series truncated to include 15 normal modes in both the horizontal and vertical directions. For validation of our method, we present tables for the Nusselt number of steady convection, with a higher number (up to 20) of normal modes included in the truncated system of equations. Our computations of transient nonlinear convection lead to steady states. A final steady state is not unique for a given geometry, but depends on the initial state and the Rayleigh number. This ambiguity of steady states is depicted by a hysteresis loop. The Malkus hypothesis of maximal heat transfer is put into perspective. This hypothesis does not pick a preferred cell width, but it nevertheless constrains the hysteresis loop." @default.
- W4306765734 created "2022-10-19" @default.
- W4306765734 creator A5014132822 @default.
- W4306765734 creator A5068242450 @default.
- W4306765734 date "2022-11-01" @default.
- W4306765734 modified "2023-09-29" @default.
- W4306765734 title "Two-dimensional Darcy–Bénard convection evolving in Fourier space" @default.
- W4306765734 cites W114139942 @default.
- W4306765734 cites W1973501071 @default.
- W4306765734 cites W1997683436 @default.
- W4306765734 cites W2011310672 @default.
- W4306765734 cites W2025550507 @default.
- W4306765734 cites W2026597832 @default.
- W4306765734 cites W2033264666 @default.
- W4306765734 cites W2046491644 @default.
- W4306765734 cites W2059080747 @default.
- W4306765734 cites W2060623732 @default.
- W4306765734 cites W2062220441 @default.
- W4306765734 cites W2087561756 @default.
- W4306765734 cites W2102243269 @default.
- W4306765734 cites W2116055501 @default.
- W4306765734 cites W2132592554 @default.
- W4306765734 cites W2141080546 @default.
- W4306765734 cites W2145089751 @default.
- W4306765734 cites W2150149911 @default.
- W4306765734 cites W2166923757 @default.
- W4306765734 cites W2167262170 @default.
- W4306765734 cites W2199790635 @default.
- W4306765734 cites W2331308056 @default.
- W4306765734 cites W2605049512 @default.
- W4306765734 cites W2619381903 @default.
- W4306765734 cites W262556444 @default.
- W4306765734 cites W2756035180 @default.
- W4306765734 cites W2771659159 @default.
- W4306765734 cites W3123475118 @default.
- W4306765734 cites W3129244463 @default.
- W4306765734 doi "https://doi.org/10.1063/5.0122215" @default.
- W4306765734 hasPublicationYear "2022" @default.
- W4306765734 type Work @default.
- W4306765734 citedByCount "0" @default.
- W4306765734 crossrefType "journal-article" @default.
- W4306765734 hasAuthorship W4306765734A5014132822 @default.
- W4306765734 hasAuthorship W4306765734A5068242450 @default.
- W4306765734 hasConcept C102519508 @default.
- W4306765734 hasConcept C121332964 @default.
- W4306765734 hasConcept C134306372 @default.
- W4306765734 hasConcept C158622935 @default.
- W4306765734 hasConcept C182310444 @default.
- W4306765734 hasConcept C203024314 @default.
- W4306765734 hasConcept C207864730 @default.
- W4306765734 hasConcept C33923547 @default.
- W4306765734 hasConcept C62520636 @default.
- W4306765734 hasConcept C74650414 @default.
- W4306765734 hasConceptScore W4306765734C102519508 @default.
- W4306765734 hasConceptScore W4306765734C121332964 @default.
- W4306765734 hasConceptScore W4306765734C134306372 @default.
- W4306765734 hasConceptScore W4306765734C158622935 @default.
- W4306765734 hasConceptScore W4306765734C182310444 @default.
- W4306765734 hasConceptScore W4306765734C203024314 @default.
- W4306765734 hasConceptScore W4306765734C207864730 @default.
- W4306765734 hasConceptScore W4306765734C33923547 @default.
- W4306765734 hasConceptScore W4306765734C62520636 @default.
- W4306765734 hasConceptScore W4306765734C74650414 @default.
- W4306765734 hasIssue "11" @default.
- W4306765734 hasLocation W43067657341 @default.
- W4306765734 hasOpenAccess W4306765734 @default.
- W4306765734 hasPrimaryLocation W43067657341 @default.
- W4306765734 hasRelatedWork W1980783579 @default.
- W4306765734 hasRelatedWork W1996627772 @default.
- W4306765734 hasRelatedWork W2017823752 @default.
- W4306765734 hasRelatedWork W2065770361 @default.
- W4306765734 hasRelatedWork W2165559438 @default.
- W4306765734 hasRelatedWork W2320412982 @default.
- W4306765734 hasRelatedWork W2479552906 @default.
- W4306765734 hasRelatedWork W4241180363 @default.
- W4306765734 hasRelatedWork W4312337410 @default.
- W4306765734 hasRelatedWork W4323309137 @default.
- W4306765734 hasVolume "34" @default.
- W4306765734 isParatext "false" @default.
- W4306765734 isRetracted "false" @default.
- W4306765734 workType "article" @default.