Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306769788> ?p ?o ?g. }
- W4306769788 endingPage "5207" @default.
- W4306769788 startingPage "5207" @default.
- W4306769788 abstract "Remote sensing data comprise a valuable information source for many ecological landscape studies that may be under-utilized because of an overwhelming amount of processing methods and derived variables. These complexities, combined with a scarcity of quality control studies, make the selection of appropriate remote sensed variables challenging. Quality control studies are necessary to evaluate the predictive power of remote sensing data and also to develop parsimonious models underpinned by functional variables, i.e., cause rather than solely correlation. Cause-based models yield superior model transferability across different landscapes and ecological settings. We propose two basic guidelines for conducting such quality control studies that increase transferability and predictive power. The first is to favor predictors that are causally related to the response. The second is to include additional variables controlling variation in the property of interest and testing for optimum processing method and/or scale. Here, we evaluated these principles in predicting ground vegetation cover, soil moisture and pH under challenging conditions with forest canopies hindering direct remote sensing of the ground. Our model using lidar data combined with natural resource maps explained most of the observed variation in soil pH and moisture, and somewhat less variation of ground vegetation cover. Soil pH was best predicted by topographic position, sediment type and site index (R2 = 0.90). Soil moisture was best predicted by topographic position, radiation load, sediment type and site index (R2 = 0.83). The best model for predicting ground vegetation cover was a combination of lidar-based estimates for light availability below canopy and forest type, including an interaction between these two variables (R2 = 0.65)." @default.
- W4306769788 created "2022-10-19" @default.
- W4306769788 creator A5022850478 @default.
- W4306769788 creator A5046743959 @default.
- W4306769788 creator A5060761741 @default.
- W4306769788 creator A5082799078 @default.
- W4306769788 creator A5086797621 @default.
- W4306769788 date "2022-10-18" @default.
- W4306769788 modified "2023-10-17" @default.
- W4306769788 title "Predicting Habitat Properties Using Remote Sensing Data: Soil pH and Moisture, and Ground Vegetation Cover" @default.
- W4306769788 cites W1507979309 @default.
- W4306769788 cites W1559910721 @default.
- W4306769788 cites W1970535395 @default.
- W4306769788 cites W1975014118 @default.
- W4306769788 cites W1983235217 @default.
- W4306769788 cites W1983264595 @default.
- W4306769788 cites W1986553787 @default.
- W4306769788 cites W1998727422 @default.
- W4306769788 cites W2002692686 @default.
- W4306769788 cites W2009063009 @default.
- W4306769788 cites W2012714768 @default.
- W4306769788 cites W2016013569 @default.
- W4306769788 cites W2028043141 @default.
- W4306769788 cites W2029587925 @default.
- W4306769788 cites W2067166176 @default.
- W4306769788 cites W2071086831 @default.
- W4306769788 cites W2075347074 @default.
- W4306769788 cites W2080225150 @default.
- W4306769788 cites W2085992922 @default.
- W4306769788 cites W2087884757 @default.
- W4306769788 cites W2091438967 @default.
- W4306769788 cites W2148557261 @default.
- W4306769788 cites W2152080634 @default.
- W4306769788 cites W2153467051 @default.
- W4306769788 cites W2156182980 @default.
- W4306769788 cites W2166103181 @default.
- W4306769788 cites W2172805036 @default.
- W4306769788 cites W2247422939 @default.
- W4306769788 cites W2282319359 @default.
- W4306769788 cites W2308425384 @default.
- W4306769788 cites W2345779911 @default.
- W4306769788 cites W2440005649 @default.
- W4306769788 cites W2501249356 @default.
- W4306769788 cites W2531426138 @default.
- W4306769788 cites W2883251903 @default.
- W4306769788 cites W2901294706 @default.
- W4306769788 cites W2936132604 @default.
- W4306769788 cites W2942821952 @default.
- W4306769788 cites W2950486036 @default.
- W4306769788 cites W2966696808 @default.
- W4306769788 cites W2980702358 @default.
- W4306769788 cites W2985267253 @default.
- W4306769788 cites W3000080835 @default.
- W4306769788 cites W3047408492 @default.
- W4306769788 cites W3064869410 @default.
- W4306769788 cites W3091303025 @default.
- W4306769788 cites W3167460808 @default.
- W4306769788 cites W3184609469 @default.
- W4306769788 doi "https://doi.org/10.3390/rs14205207" @default.
- W4306769788 hasPublicationYear "2022" @default.
- W4306769788 type Work @default.
- W4306769788 citedByCount "0" @default.
- W4306769788 crossrefType "journal-article" @default.
- W4306769788 hasAuthorship W4306769788A5022850478 @default.
- W4306769788 hasAuthorship W4306769788A5046743959 @default.
- W4306769788 hasAuthorship W4306769788A5060761741 @default.
- W4306769788 hasAuthorship W4306769788A5082799078 @default.
- W4306769788 hasAuthorship W4306769788A5086797621 @default.
- W4306769788 hasBestOaLocation W43067697881 @default.
- W4306769788 hasConcept C127313418 @default.
- W4306769788 hasConcept C142724271 @default.
- W4306769788 hasConcept C159390177 @default.
- W4306769788 hasConcept C187320778 @default.
- W4306769788 hasConcept C18903297 @default.
- W4306769788 hasConcept C205649164 @default.
- W4306769788 hasConcept C24939127 @default.
- W4306769788 hasConcept C2776133958 @default.
- W4306769788 hasConcept C2780648208 @default.
- W4306769788 hasConcept C39432304 @default.
- W4306769788 hasConcept C4792198 @default.
- W4306769788 hasConcept C51399673 @default.
- W4306769788 hasConcept C62649853 @default.
- W4306769788 hasConcept C71924100 @default.
- W4306769788 hasConcept C76886044 @default.
- W4306769788 hasConcept C86803240 @default.
- W4306769788 hasConceptScore W4306769788C127313418 @default.
- W4306769788 hasConceptScore W4306769788C142724271 @default.
- W4306769788 hasConceptScore W4306769788C159390177 @default.
- W4306769788 hasConceptScore W4306769788C187320778 @default.
- W4306769788 hasConceptScore W4306769788C18903297 @default.
- W4306769788 hasConceptScore W4306769788C205649164 @default.
- W4306769788 hasConceptScore W4306769788C24939127 @default.
- W4306769788 hasConceptScore W4306769788C2776133958 @default.
- W4306769788 hasConceptScore W4306769788C2780648208 @default.
- W4306769788 hasConceptScore W4306769788C39432304 @default.
- W4306769788 hasConceptScore W4306769788C4792198 @default.
- W4306769788 hasConceptScore W4306769788C51399673 @default.
- W4306769788 hasConceptScore W4306769788C62649853 @default.