Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306777709> ?p ?o ?g. }
- W4306777709 endingPage "1585" @default.
- W4306777709 startingPage "1573" @default.
- W4306777709 abstract "Abstract Background Online adaptive radiation therapy (RT) using hybrid magnetic resonance linear accelerators (MR‐Linacs) can administer a tailored radiation dose at each treatment fraction. Daily MR imaging followed by organ and target segmentation adjustments allow to capture anatomical changes, improve target volume coverage, and reduce the risk of side effects. The introduction of automatic segmentation techniques could help to further improve the online adaptive workflow by shortening the re‐contouring time and reducing intra‐ and inter‐observer variability. In fractionated RT, prior knowledge, such as planning images and manual expert contours, is usually available before irradiation, but not used by current artificial intelligence‐based autocontouring approaches. Purpose The goal of this study was to train convolutional neural networks (CNNs) for automatic segmentation of bladder, rectum (organs at risk, OARs), and clinical target volume (CTV) for prostate cancer patients treated at 0.35 T MR‐Linacs. Furthermore, we tested the CNNs generalization on data from independent facilities and compared them with the MR‐Linac treatment planning system (TPS) propagated structures currently used in clinics. Finally, expert planning delineations were utilized for patient‐ (PS) and facility‐specific (FS) transfer learning to improve auto‐segmentation of CTV and OARs on fraction images. Methods In this study, data from fractionated treatments at 0.35 T MR‐Linacs were leveraged to develop a 3D U‐Net‐based automatic segmentation. Cohort C1 had 73 planning images and cohort C2 had 19 planning and 240 fraction images. The baseline models (BMs) were trained solely on C1 planning data using 53 MRIs for training and 10 for validation. To assess their accuracy, the models were tested on three data subsets: (i) 10 C1 planning images not used for training, (ii) 19 C2 planning, and (iii) 240 C2 fraction images. BMs also served as a starting point for FS and PS transfer learning, where the planning images from C2 were used for network parameter fine tuning. The segmentation output of the different trained models was compared against expert ground truth by means of geometric metrics. Moreover, a trained physician graded the network segmentations as well as the segmentations propagated by the clinical TPS. Results The BMs showed dice similarity coefficients (DSC) of 0.88(4) and 0.93(3) for the rectum and the bladder, respectively, independent of the facility. CTV segmentation with the BM was the best for intermediate‐ and high‐risk cancer patients from C1 with DSC=0.84(5) and worst for C2 with DSC=0.74(7). The PS transfer learning brought a significant improvement in the CTV segmentation, yielding DSC=0.72(4) for post‐prostatectomy and low‐risk patients and DSC=0.88(5) for intermediate‐ and high‐risk patients. The FS training did not improve the segmentation accuracy considerably. The physician's assessment of the TPS‐propagated versus network‐generated structures showed a clear advantage of the latter. Conclusions The obtained results showed that the presented segmentation technique has potential to improve automatic segmentation for MR‐guided RT." @default.
- W4306777709 created "2022-10-19" @default.
- W4306777709 creator A5004434507 @default.
- W4306777709 creator A5019655573 @default.
- W4306777709 creator A5033497235 @default.
- W4306777709 creator A5038323479 @default.
- W4306777709 creator A5048609928 @default.
- W4306777709 creator A5049637504 @default.
- W4306777709 creator A5070471395 @default.
- W4306777709 creator A5074507143 @default.
- W4306777709 creator A5078958139 @default.
- W4306777709 creator A5088772306 @default.
- W4306777709 creator A5089792965 @default.
- W4306777709 date "2022-11-07" @default.
- W4306777709 modified "2023-10-01" @default.
- W4306777709 title "Patient‐specific transfer learning for auto‐segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi‐centric evaluation" @default.
- W4306777709 cites W1992996001 @default.
- W4306777709 cites W2861440650 @default.
- W4306777709 cites W2884707216 @default.
- W4306777709 cites W2891367603 @default.
- W4306777709 cites W2894315883 @default.
- W4306777709 cites W2930910485 @default.
- W4306777709 cites W2931562357 @default.
- W4306777709 cites W2937088162 @default.
- W4306777709 cites W2948831484 @default.
- W4306777709 cites W2962914239 @default.
- W4306777709 cites W2969176485 @default.
- W4306777709 cites W2995681261 @default.
- W4306777709 cites W2998292576 @default.
- W4306777709 cites W3007943565 @default.
- W4306777709 cites W3012412627 @default.
- W4306777709 cites W3027849539 @default.
- W4306777709 cites W3037430895 @default.
- W4306777709 cites W3039691797 @default.
- W4306777709 cites W3046004442 @default.
- W4306777709 cites W3111146197 @default.
- W4306777709 cites W3135768682 @default.
- W4306777709 cites W3142844844 @default.
- W4306777709 cites W3161646916 @default.
- W4306777709 cites W3186066863 @default.
- W4306777709 cites W3205007314 @default.
- W4306777709 cites W3207727642 @default.
- W4306777709 cites W3212480182 @default.
- W4306777709 cites W4206061009 @default.
- W4306777709 doi "https://doi.org/10.1002/mp.16056" @default.
- W4306777709 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36259384" @default.
- W4306777709 hasPublicationYear "2022" @default.
- W4306777709 type Work @default.
- W4306777709 citedByCount "8" @default.
- W4306777709 countsByYear W43067777092023 @default.
- W4306777709 crossrefType "journal-article" @default.
- W4306777709 hasAuthorship W4306777709A5004434507 @default.
- W4306777709 hasAuthorship W4306777709A5019655573 @default.
- W4306777709 hasAuthorship W4306777709A5033497235 @default.
- W4306777709 hasAuthorship W4306777709A5038323479 @default.
- W4306777709 hasAuthorship W4306777709A5048609928 @default.
- W4306777709 hasAuthorship W4306777709A5049637504 @default.
- W4306777709 hasAuthorship W4306777709A5070471395 @default.
- W4306777709 hasAuthorship W4306777709A5074507143 @default.
- W4306777709 hasAuthorship W4306777709A5078958139 @default.
- W4306777709 hasAuthorship W4306777709A5088772306 @default.
- W4306777709 hasAuthorship W4306777709A5089792965 @default.
- W4306777709 hasBestOaLocation W43067777091 @default.
- W4306777709 hasConcept C108583219 @default.
- W4306777709 hasConcept C121608353 @default.
- W4306777709 hasConcept C121684516 @default.
- W4306777709 hasConcept C126322002 @default.
- W4306777709 hasConcept C126838900 @default.
- W4306777709 hasConcept C143409427 @default.
- W4306777709 hasConcept C154945302 @default.
- W4306777709 hasConcept C19527891 @default.
- W4306777709 hasConcept C201645570 @default.
- W4306777709 hasConcept C2779104521 @default.
- W4306777709 hasConcept C2780192828 @default.
- W4306777709 hasConcept C2989005 @default.
- W4306777709 hasConcept C41008148 @default.
- W4306777709 hasConcept C509974204 @default.
- W4306777709 hasConcept C71924100 @default.
- W4306777709 hasConcept C75088862 @default.
- W4306777709 hasConcept C81363708 @default.
- W4306777709 hasConcept C89600930 @default.
- W4306777709 hasConceptScore W4306777709C108583219 @default.
- W4306777709 hasConceptScore W4306777709C121608353 @default.
- W4306777709 hasConceptScore W4306777709C121684516 @default.
- W4306777709 hasConceptScore W4306777709C126322002 @default.
- W4306777709 hasConceptScore W4306777709C126838900 @default.
- W4306777709 hasConceptScore W4306777709C143409427 @default.
- W4306777709 hasConceptScore W4306777709C154945302 @default.
- W4306777709 hasConceptScore W4306777709C19527891 @default.
- W4306777709 hasConceptScore W4306777709C201645570 @default.
- W4306777709 hasConceptScore W4306777709C2779104521 @default.
- W4306777709 hasConceptScore W4306777709C2780192828 @default.
- W4306777709 hasConceptScore W4306777709C2989005 @default.
- W4306777709 hasConceptScore W4306777709C41008148 @default.
- W4306777709 hasConceptScore W4306777709C509974204 @default.
- W4306777709 hasConceptScore W4306777709C71924100 @default.
- W4306777709 hasConceptScore W4306777709C75088862 @default.
- W4306777709 hasConceptScore W4306777709C81363708 @default.