Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306786596> ?p ?o ?g. }
- W4306786596 endingPage "1182" @default.
- W4306786596 startingPage "1157" @default.
- W4306786596 abstract "Abstract. Strong winds associated with extratropical cyclones are one of the most dangerous natural hazards in Europe. These high winds are mostly associated with five mesoscale dynamical features: the warm (conveyor belt) jet (WJ); the cold (conveyor belt) jet (CJ); cold frontal convection (CFC); strong cold-sector winds (CS); and, at least in some storms, the sting jet (SJ). The timing within the cyclone's life cycle, the location relative to the cyclone core and some further characteristics differ between these features and, hence, likely also the associated forecast errors. Here, we present a novel objective identification approach for these high-wind features using a probabilistic random forest (RF) based on each feature’s most important characteristics in near-surface wind, rainfall, pressure and temperature evolution. As the CJ and SJ are difficult to distinguish in near-surface observations alone, these two features are considered together here. A strength of the identification method is that it works flexibly and is independent of local characteristics and horizontal gradients; thus, it can be applied to irregularly spaced surface observations and to gridded analyses and forecasts of different resolution in a consistent way. As a reference for the RF, we subjectively identify the four storm features (WJ, CS, CFC, and CJ and SJ) in 12 winter storm cases between 2015 and 2020 in both hourly surface observations and high-resolution reanalyses of the German Consortium for Small-scale Modeling (COSMO) model over Europe, using an interactive data analysis and visualisation tool. The RF is then trained on station observations only. The RF learns physically consistent relations and reveals the mean sea level pressure (tendency), potential temperature, precipitation amount and wind direction to be most important for the distinction between the features. From the RF, we get probabilities of each feature occurring at the single stations, which can be interpolated into areal information using Kriging. The results show a reliable identification for all features, especially for the WJ and CFC. We find difficulties in the distinction of the CJ and CS in extreme cases, as the features have rather similar meteorological characteristics. Mostly consistent results in observations and reanalysis data suggest that the novel approach can be applied to other data sets without the need for adaptation. Our new software RAMEFI (RAndom-forest-based MEsoscale wind Feature Identification) is made publicly available for straightforward use by the atmospheric community and enables a wide range of applications, such as working towards a climatology of these features for multi-decadal time periods (see Part 2 of this paper; Eisenstein et al., 2022d), analysing forecast errors in high-resolution COSMO ensemble forecasts and developing feature-dependent post-processing procedures." @default.
- W4306786596 created "2022-10-20" @default.
- W4306786596 creator A5001161357 @default.
- W4306786596 creator A5015598767 @default.
- W4306786596 creator A5028107579 @default.
- W4306786596 creator A5028221967 @default.
- W4306786596 creator A5029876178 @default.
- W4306786596 date "2022-10-19" @default.
- W4306786596 modified "2023-10-16" @default.
- W4306786596 title "Identification of high-wind features within extratropical cyclones using a probabilistic random forest – Part 1: Method and case studies" @default.
- W4306786596 cites W1513919779 @default.
- W4306786596 cites W1580966063 @default.
- W4306786596 cites W1975273625 @default.
- W4306786596 cites W1989357209 @default.
- W4306786596 cites W1993792111 @default.
- W4306786596 cites W1995522503 @default.
- W4306786596 cites W1997457460 @default.
- W4306786596 cites W2004586810 @default.
- W4306786596 cites W2012942264 @default.
- W4306786596 cites W2022860576 @default.
- W4306786596 cites W2024697317 @default.
- W4306786596 cites W2036168723 @default.
- W4306786596 cites W2053531474 @default.
- W4306786596 cites W2065764894 @default.
- W4306786596 cites W2067863556 @default.
- W4306786596 cites W2073241381 @default.
- W4306786596 cites W2082323488 @default.
- W4306786596 cites W2099693083 @default.
- W4306786596 cites W2130715829 @default.
- W4306786596 cites W2136178461 @default.
- W4306786596 cites W2155529789 @default.
- W4306786596 cites W2159375104 @default.
- W4306786596 cites W2159460476 @default.
- W4306786596 cites W2174417355 @default.
- W4306786596 cites W2174925780 @default.
- W4306786596 cites W2296277783 @default.
- W4306786596 cites W2396938813 @default.
- W4306786596 cites W2554888201 @default.
- W4306786596 cites W2620681160 @default.
- W4306786596 cites W2650214255 @default.
- W4306786596 cites W2770594110 @default.
- W4306786596 cites W2786693279 @default.
- W4306786596 cites W2787894218 @default.
- W4306786596 cites W2789743533 @default.
- W4306786596 cites W2792791748 @default.
- W4306786596 cites W2885480621 @default.
- W4306786596 cites W2890870942 @default.
- W4306786596 cites W2911964244 @default.
- W4306786596 cites W2944050395 @default.
- W4306786596 cites W2944610617 @default.
- W4306786596 cites W2964208955 @default.
- W4306786596 cites W2969309273 @default.
- W4306786596 cites W2979195985 @default.
- W4306786596 cites W3014703899 @default.
- W4306786596 cites W3047801607 @default.
- W4306786596 cites W3081452296 @default.
- W4306786596 cites W3082985360 @default.
- W4306786596 cites W3102027041 @default.
- W4306786596 cites W3108051726 @default.
- W4306786596 cites W3109738386 @default.
- W4306786596 cites W3154586253 @default.
- W4306786596 cites W3166154243 @default.
- W4306786596 cites W3211037204 @default.
- W4306786596 cites W4211049957 @default.
- W4306786596 cites W4242577423 @default.
- W4306786596 cites W4248074394 @default.
- W4306786596 cites W4280538825 @default.
- W4306786596 cites W4283657627 @default.
- W4306786596 cites W4285593198 @default.
- W4306786596 cites W4297957988 @default.
- W4306786596 doi "https://doi.org/10.5194/wcd-3-1157-2022" @default.
- W4306786596 hasPublicationYear "2022" @default.
- W4306786596 type Work @default.
- W4306786596 citedByCount "3" @default.
- W4306786596 countsByYear W43067865962023 @default.
- W4306786596 crossrefType "journal-article" @default.
- W4306786596 hasAuthorship W4306786596A5001161357 @default.
- W4306786596 hasAuthorship W4306786596A5015598767 @default.
- W4306786596 hasAuthorship W4306786596A5028107579 @default.
- W4306786596 hasAuthorship W4306786596A5028221967 @default.
- W4306786596 hasAuthorship W4306786596A5029876178 @default.
- W4306786596 hasBestOaLocation W43067865961 @default.
- W4306786596 hasConcept C105306849 @default.
- W4306786596 hasConcept C127313418 @default.
- W4306786596 hasConcept C153294291 @default.
- W4306786596 hasConcept C205649164 @default.
- W4306786596 hasConcept C2777864850 @default.
- W4306786596 hasConcept C39432304 @default.
- W4306786596 hasConcept C40382383 @default.
- W4306786596 hasConcept C41008148 @default.
- W4306786596 hasConcept C42935608 @default.
- W4306786596 hasConcept C49204034 @default.
- W4306786596 hasConcept C72319357 @default.
- W4306786596 hasConcept C9390403 @default.
- W4306786596 hasConceptScore W4306786596C105306849 @default.
- W4306786596 hasConceptScore W4306786596C127313418 @default.
- W4306786596 hasConceptScore W4306786596C153294291 @default.
- W4306786596 hasConceptScore W4306786596C205649164 @default.