Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306787410> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4306787410 endingPage "012039" @default.
- W4306787410 startingPage "012039" @default.
- W4306787410 abstract "Deep learning can enable image-based high-throughput phenotype analysis of plants. However, deep learning methods require large amounts of artificially annotated data. For application in plant phenotyping, the available data sets are usually small; it is expensive to generate new data and challenging to improve model accuracy with limited data. In this study, the L-system was used to generate virtual image data for training deep learning models. The precision (P), recall (R), and F-score (F) of the image segmentation model using a combination of virtual data and real data reached 0.95, 0.91, and 0.93, respectively; Mean Average Precision (mAP) and Intersection over Union (IoU) of the target detection model reached 0.96 and 0.92, respectively; the coefficient of determination (R2) and the standardized root mean square error evaluation of the leaf count model reached 0.94 and 0.93, respectively; all the results outperformed the results of training with only real data. Thus, we demonstrated that virtual data improves the effectiveness of the prediction accuracy of deep neural network models, and the findings of this study can provide technical support for high-throughput phenotype analysis." @default.
- W4306787410 created "2022-10-20" @default.
- W4306787410 creator A5006610302 @default.
- W4306787410 creator A5026623896 @default.
- W4306787410 creator A5074948475 @default.
- W4306787410 creator A5077068949 @default.
- W4306787410 creator A5077132603 @default.
- W4306787410 creator A5077319251 @default.
- W4306787410 date "2022-10-01" @default.
- W4306787410 modified "2023-09-27" @default.
- W4306787410 title "Application of Plant Phenotype Extraction Using Virtual Data with Deep Learning" @default.
- W4306787410 cites W2103959917 @default.
- W4306787410 cites W2738252183 @default.
- W4306787410 cites W2790979755 @default.
- W4306787410 cites W2804860796 @default.
- W4306787410 cites W2895430354 @default.
- W4306787410 cites W2911608675 @default.
- W4306787410 cites W2948301682 @default.
- W4306787410 cites W2969154550 @default.
- W4306787410 cites W2998442230 @default.
- W4306787410 cites W3135825524 @default.
- W4306787410 doi "https://doi.org/10.1088/1742-6596/2356/1/012039" @default.
- W4306787410 hasPublicationYear "2022" @default.
- W4306787410 type Work @default.
- W4306787410 citedByCount "0" @default.
- W4306787410 crossrefType "journal-article" @default.
- W4306787410 hasAuthorship W4306787410A5006610302 @default.
- W4306787410 hasAuthorship W4306787410A5026623896 @default.
- W4306787410 hasAuthorship W4306787410A5074948475 @default.
- W4306787410 hasAuthorship W4306787410A5077068949 @default.
- W4306787410 hasAuthorship W4306787410A5077132603 @default.
- W4306787410 hasAuthorship W4306787410A5077319251 @default.
- W4306787410 hasBestOaLocation W43067874101 @default.
- W4306787410 hasConcept C105795698 @default.
- W4306787410 hasConcept C108583219 @default.
- W4306787410 hasConcept C115961682 @default.
- W4306787410 hasConcept C119857082 @default.
- W4306787410 hasConcept C124101348 @default.
- W4306787410 hasConcept C127413603 @default.
- W4306787410 hasConcept C139945424 @default.
- W4306787410 hasConcept C146978453 @default.
- W4306787410 hasConcept C148524875 @default.
- W4306787410 hasConcept C153180895 @default.
- W4306787410 hasConcept C154945302 @default.
- W4306787410 hasConcept C33923547 @default.
- W4306787410 hasConcept C41008148 @default.
- W4306787410 hasConcept C50644808 @default.
- W4306787410 hasConcept C64543145 @default.
- W4306787410 hasConcept C81363708 @default.
- W4306787410 hasConcept C81669768 @default.
- W4306787410 hasConcept C89600930 @default.
- W4306787410 hasConceptScore W4306787410C105795698 @default.
- W4306787410 hasConceptScore W4306787410C108583219 @default.
- W4306787410 hasConceptScore W4306787410C115961682 @default.
- W4306787410 hasConceptScore W4306787410C119857082 @default.
- W4306787410 hasConceptScore W4306787410C124101348 @default.
- W4306787410 hasConceptScore W4306787410C127413603 @default.
- W4306787410 hasConceptScore W4306787410C139945424 @default.
- W4306787410 hasConceptScore W4306787410C146978453 @default.
- W4306787410 hasConceptScore W4306787410C148524875 @default.
- W4306787410 hasConceptScore W4306787410C153180895 @default.
- W4306787410 hasConceptScore W4306787410C154945302 @default.
- W4306787410 hasConceptScore W4306787410C33923547 @default.
- W4306787410 hasConceptScore W4306787410C41008148 @default.
- W4306787410 hasConceptScore W4306787410C50644808 @default.
- W4306787410 hasConceptScore W4306787410C64543145 @default.
- W4306787410 hasConceptScore W4306787410C81363708 @default.
- W4306787410 hasConceptScore W4306787410C81669768 @default.
- W4306787410 hasConceptScore W4306787410C89600930 @default.
- W4306787410 hasIssue "1" @default.
- W4306787410 hasLocation W43067874101 @default.
- W4306787410 hasOpenAccess W4306787410 @default.
- W4306787410 hasPrimaryLocation W43067874101 @default.
- W4306787410 hasRelatedWork W2337926734 @default.
- W4306787410 hasRelatedWork W2738221750 @default.
- W4306787410 hasRelatedWork W3102253946 @default.
- W4306787410 hasRelatedWork W3144574764 @default.
- W4306787410 hasRelatedWork W3154941836 @default.
- W4306787410 hasRelatedWork W3156786002 @default.
- W4306787410 hasRelatedWork W4293211451 @default.
- W4306787410 hasRelatedWork W4308191152 @default.
- W4306787410 hasRelatedWork W4311257506 @default.
- W4306787410 hasRelatedWork W564581980 @default.
- W4306787410 hasVolume "2356" @default.
- W4306787410 isParatext "false" @default.
- W4306787410 isRetracted "false" @default.
- W4306787410 workType "article" @default.